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Abstract 

The applicability of employing a carbon fibre mesh as an electrochemical sensing 

substructure for assessing urate transformations within wound exudates is evaluated. Prototype 

sensor assemblies have been designed and their response characteristics towards uric acid and 

other common physiological components are detailed. Modification of the carbon fibre sensor 

through surface anodisation and the application of cellulose acetate permselective barriers have 

been shown to lead to optimized responses and much greater sensitivity (1440% increase) and 

specificity. These could enable the accurate periodic monitoring of uric acid in wound fluid. The 

performance characteristics of the composite sensors in whole blood, serum and blister fluid have 

been investigated. 
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Introduction 

The threat of wound infection is an ever present hazard in modern healthcare whether the 

patient is being treated locally or within a hospital environment. A recent survey has put the 

incidence of hospital acquired infections (HAFs) relating to surgical wound management at 

around 10% [1,2] and it has been estimated that complications arising from these can increase the 

length of hospitalisation to between 6-13 days [3,4]. There are obvious implications for the 

patient and health service with the cost to the U K NHS alone within the billion pound region [3]. 

In many cases, the origin is simply the colonisation of the wound by adventitious opportunistic 

bacteria such as Pseudomonas aeruginosa or Staphylococcus aureus [5-7] as a consequence of 

poor hygiene. Irrespective of the cause, there is a need for a more intelligent approach to wound 

management. While this clearly dictates that improvements are made to basic hygiene, 

technology also has a part to play and recent advances in nano-particle science have seen the 

development of antibacterial dressings, frequently Silver based [8]. Nevertheless, the inherent 

adaptability of micro-organisms means that there remains a need for a failsafe system that can 

alert either the patient or the health care professional to the advent of a potential infection. The 

present communication has sought to explore the use of an electrochemical sensing system 

capable of measuring urate directly within the wound fluid as an indirect marker for assessing 

both the physiological response to the injury and, importantly, as a generic indicator for the 

presence of bacterial colonisation. Whilst surgical wounds as a whole may be considered; of 

particular importance regarding infection and other complications is the management of thermal 

burn injuries. These are ascribed to the large, open surface of such wounds, especially following 

debridment, and the generation of reactive oxygen species (ROS's) and inflammatory mediators 

which may induce systemic injury [9]. 
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The underlying rationale behind the choice of urate lies in the fact that the molecule has a 

significant physiological role for the patient [10] and is degraded by certain pathogenic and 

opportunist pathogenic bacteria including the aforementioned infectants [11]. 

It could be anticipated that its inherent antioxidant properties may mean that the local 

concentration and fluctuations therein reflect the nature of ongoing oxidative stress processes 

within the body, which may lead to serious and potentially-fatal systemic complications e.g. 

Cardiac mitochondrial damage [12]. Thus, uric acid determination could provide a semi 

quantitative diagnostic assessment of the severity of the local and systemic injury; or the 

effectiveness of the antioxidant treatment as part of the requisite fluid resuscitation. 

Another possibility is that the local consumption of urate could, in principle, occur where 

certain bacterial colonies effectively metabolise the urate. The critical point in the latter rests 

upon the fact that urate is the final end product of purine catabolism within humans and hence the 

relatively large concentration within serum (150-420 u M [13]). Many organisms, both pathogens 

and opportunist pathogens, have the ability to metabolise uric acid; importantly, the two major 

causes of burn wound infection: Staphylococcus aureus and Pseudomonas aeruginosa are 

included [11,14-16]. Both of which have been reported to rapidly metabolise uric acid, via 

microbial uricase synthesis. Microbial uricase catabolises uric acid to allantoin [17], as is 

commonplace in the human gastro-intestinal tract. 

Therefore, it could be envisaged that reductions in urate concentration may provide a 

generic indicator for monitoring the change from bacterial contamination to colonization. A 

substantial depletion of urate may consequently provide a vital, early warning flag that can alert 

the patient or healthcare professional such that remedial action can be taken prior to the onset of 

"critical colonization" and the subsequent wound infection [18]. As well as a decrease in 

mortality, it is reasonable to assume that this may help reduce the generation of antibiotic 

resistant bacterial strains, by the theory, the fewer bacteria treated with an antibiotic, the fewer 

mutant organisms expressed. 
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The foundations of the sensor design rest upon the exploitation of a carbon fibre mesh 

both as the detection element and the transduction conduit. The electro-oxidation of urate at 

various forms of carbon is well documented and there are numerous analytical methodologies 

incorporating such [19-24]. The uses of carbon fibre electrodes for biomedical applications are 

also well documented for the detection of: nitric oxide [25], lactate dehydrogenase [26], 

perphenazine [27], haemoglobin [28], ascorbate, catechol and indole [29], chloramphenicol [30] 

and uric acid [31, 32] However the aforementioned detection of uric acid was performed in-vitro, 

using diluted sample and a large surface area sensor. Single fibre electrodes are commonly used 

for in-vivo monitoring for many other analytes, commonly used to measure analytes within the 

brain; acetylcholine and choline [33], dopamine [34-36], acetaminophen [37], nitric oxide [38] 

and glucose [39]. The challenge, and the emphasis of the current investigation, is to develop a 

processing strategy that allows the material to be harnessed in a way that can allow the rapid 

production of sensors that could be easily incorporated within a smart bandage and which can 

facilitate reagentless and periodic monitoring of urate directly within a range of biofluids. 

The core rationale is outlined in Figure 1A where the carbon fibre sheets are thermally 

sandwiched between polyester laminate. The underlying carbon is selectively exposed to function 

as the sensing element by laser etching through the encapsulating sheet - which can then be 

divided up into individual sensing structures and thereby offers an opportunity for mass 

manufacture. The proposed application of the laminate as a smart sensor is shown in Figure IB. 

The system is integrated within a conventional adhesive plaster - replacing the absorbent pad 

component traditionally associated with the latter. 

The principal aim of this investigation was to determine the potential applicability of the 

process outlined in Figure 1 through assessing the response of the carbon fibre composite sensor 

to urate in various biofluids of direct relevance to wound management. 
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Experimental Details 

Materials: A l l reagents were of the highest grade available and used without further purification. 

Stock solutions of uric acid (typically lOmM) were prepared in 0.1 M NaOH. A l l other solutions 

were prepared using Britton-Robinson buffer (acetic, boric and phosphoric acids - each at a 

concentration of 0.04 M) adjusted to pH 7 through the addition of sodium hydroxide. Standard 

solutions were generally prepared in deionised water from an Elgastat (Elga, UK) water system 

and refrigerated when not in use. Toray carbon fibre cloth was purchased from E-Tek Inc (USA) 

and used as received. Lamination pouches (Rexel UK) were a commercial stationary variety with 

a film thickness of 75 um each side. Copper Shielding tape (100 um thick, adhesive backed) was 

obtained from RS electronics. 

Instrumentation: Electrochemical measurements were conducted using a uAutolab type III 

computer controlled potentiostat (Eco-Chemie, Utrecht, The Netherlands) using a two electrode 

configuration consisting of the carbon fibre assembly working electrode, a chloridised silver wire 

as the combined counter/reference electrode. 

Sensor Construction: Laminated carbon fibre prototypes were prepared by thermally 

sandwiching carbon fibre sheet between sleeves of a pre-etched (1 or 2 mm diameter window) 

resin-polyester lamination pouch using a commercially available laminator. Electrical connection 

to the carbon film was made through the presence of a strip of copper shielding tape. The 

electrodes were baked at 100°C for 1 hour in order to ensure the complete permeation of the resin 

between the fibres within the laminate. This is necessary to ensure the mechanical integrity and 

coherence of the seal between the sensing fibre layer and the insulating polyester sheath such that 

no solvent creep or de-lamination would occur during extended monitoring periods times (up to 

18 replicate scans over 30 minutes or 7 replicate scans over 120 minutes) 
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Results and Discussion 

The morphology of the laser patterned laminate - carbon composite was examined using 

scanning electron microscopy with the interface between the exposed fibre substructure and the 

insulating laminate detailed in Figure 2. The sensing element is effectively a random assembly of 

discrete and amalgamated fibres presenting a large 3-dimensional network and is in marked 

contrast to the planar designs found in conventional macro or micro sized urate sensor formats 

[40,41 J. The initial analytical characterisation of the applicability of the network towards the 

sensing of urate was conducted in buffered solution - containing up to 500 u M ascorbate. The 

addition of latter is significant in that it is ubiquitous within biofluids and easily electro-oxidised 

at potentials not dissimilar to those required for urate detection. Square wave voltammograms 

detailing the response of the carbon network to equimolar urate and ascorbate are detailed in 

Figure 3 (dashed line). A single, broad peak is observed with no resolution between the two 

compounds. 

Pre-treatment of the carbon fibre sensor through oxidation in 0.1M sodium hydroxide 

(+2V, 10 min.) yielded a very different response. A single sharp peak is observed at +0.23V 

which is attributed solely to the oxidation of urate. It has been previously shown that the anodic 

fracturing of carbon substrate as a consequence of such pre-treatment gives superior resolution 

between ascorbate and urate and markedly reduces the electron transfer kinetics of the former 

such that, under normal physiological concentrations, it provides a negligible contribution to the 

voltammetric profile. The anodizing of the carbon fibre created a substantial gain (1440% 

increase) in the magnitude of the urate peak as detailed in Figure 3. Confirmation that the sharp 

peak at +0.23V is indeed urate with no contribution from ascorbate was provided by repeating the 

experiment but with a markedly increased concentration of ascorbate. Square wave 

voltammograms detailing the response to 100 u M urate in the presence of ascorbate (2.2 mM) are 
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shown in Figure 3 solid line. The ascorbate emerges as a broad peak (+0.03V) to the left of the 

sharp urate process. This highlights the fact that even in the presence of massive ascorbate 

concentration - it is still possible to obtain an unambiguous assessment of urate concentration and 

is in marked contrast to the result obtained with the un-modified carbon fibre (Figure 3 - dashed 

line). The anodisation effect leads to the exfoliation of the fibre structure of the mesh -

increasing the surface area at the nanoscale and increasing the population of hydrophilic 

(typically hydroxyl and carboxylic acid) functionalities on the resulting exposed surface and 

confirmed by XPS studies. The delamination effect also has the influence of creating more edge 

plane sites which also serves to increase the electron transfer rate and hence improve the response 

to urate [42,43]. 

The influence of real biofluids on the sensor response was again assessed using square 

wave voltammetry; the real biofluids were used early in this prototype development, as these are 

fluids in which a smart-bandage sensor is required to function. The responses of the untreated and 

modified fibre sensors assemblies to whole blood are detailed in Figure 4A. In this instance, the 

untreated blood was applied directly to the sensing surface and the measurement conducted 

almost immediately. The response of the un-modified fibre sensor shows effectively no 

discrimination between the different physiological components with a single broad peak found at 

+0.69V. The pre-anodised sensor, however, displays a peak profile similar to that observed in the 

control buffer solution (Figure 3 - solid line). The magnitude of the peaks could be enhanced 

through increasing the degree of surface pre-treatment prior to applying the blood. Thus, 

extending the pre-anodisation time to 30 minutes results in a markedly enhanced signal (Figure 

4A has been baseline offset for clarity) with three, clearly resolved peak processes. The first (-

0.12V) is attributed to the redox groups within the fibre substructure, the second (+0.23V) is the 

urate and the third (+0.66V) is liable to be a combination of other, less easily oxidised biological 

components such as tyrosine, tryptophan as well as other purines. This was corroborated by 

comparing the response to urate in the presence of tryptophan (Figure 4B). The emergence of a 
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second peak at +0.53V is located in a similar position to that observed with the whole blood 

sample. Similar responses were observed with tyrosine with near identical peak positions between 

tyrosine and tryptophan highlighting both the limitation of the sensor for speciation in such 

complex fluids but, in the present instance, the supreme advantage of facilitating the almost 

unique discrimination of urate from the other blood constituents. 

Given that the sensor can clearly detect urate in a complex biofluid, the next issue to be 

addressed relates to whether or not it is indeed capable of monitoring urate beyond the initial 

scan. The intended application requires periodic scanning of the biofluid for differences in urate 

concentration and hence alert the patient / clinical staff to the possibility of wound colonisation. 

Serum samples were used in this instance to avoid the complications of clotting and the need for 

exogenous agents to prevent such (e.g. Lithium heparin). This would allow multiple replicate 

measurements on the same sensor assembly over a prolonged period and hence would mimic the 

conditions under which a prototype could be expected to operate. A square wave voltammogram 

detailing the initial response to the application of the serum sample is shown in Figure 5A. The 

urate peak is again clearly resolved and is consistent with both the control urate solution and the 

responses observed in whole blood. The variation in peak height as a function of replicate scans 

(upto 18 replicates: same sensor, same sample) is highlighted in Figure 5B (solid circles). It can 

be seen that the peak height response decreases markedly with increasing measurements. It was 

envisaged that the sustained decay in the response could be attributed to the fouling of the 

electrode surface by the extra-cellular components - principally protein and fats - effectively 

reducing the active sensing area and hence the response. 

To counter this problem, the electrode surface was coated with cellulose acetate to act as 

a protective permselective barrier acting by size exclusion (prepared by drop casting from an 

ethanol solution). The response characteristics of this second modification have been included 

within Figure 5B (white circles) for comparison. There is an initial decay in response, similar to 

that observed with the uncoated anodised fibre mesh, but, in contrast to the latter, the response 
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soon stabilises. It is possible that the initial responses are simply a consequence of the 

equilibration of the anodised fibre in the new medium. The difference in response characteristics 

(normalised to the peak height measured on the first scan) between the cellulose acetate modified 

sensor and the uncoated, anodised, system is marked with only a minor loss in performance 

(-20%) observed with the former whereas the latter suffers significantly (>60% decrease) over 18 

replicate scans. The application of this semi-permeable coating reduced the signal current by 

between 3x and 5x due to decreasing surface area, as to be expected. The subsequent results 

however show this does not have a substantial impact on the overall sensitivity of the sensor 

detection as sufficient currents have been detected, even for uric acid concentrations far below the 

physiological range for biofluids. Whilst carbon fibre and cellulose acetate have previously been 

used in conjunction; this is the first reported use of them together for detection of uric acid or for 

use in wound management, again highlighting this novel approach to smart bandage 

development. 

The last hurdle in the preliminary assessment of the applicability of the sensing system 

was to determine whether or not it could detect urate in a blister wound - typical of the open 

wound liable to be subject to common bacterial infection. A square wave voltammogram 

detailing the response of the anodised sensor system towards the blister exudate is shown in 

Figure 5C. The profile is again similar to that found with the other biofluids and highlights the 

potential for applying the sensor system within a number of biomedical contexts where it may be 

necessary to monitor wound status. 

To ensure that accurate quantification of uric acid is possible a series of standard curves 

were run throughout the investigation, whilst the lower and more physiologically relevant range 

(0-500 uM) fit a linear equation (y=0.025x+0.561), with an R-squared value of 0.97, it was found 

possible to extend the analytical range upto 1 m M but fitting a more complex, one-site saturation 

standard curve (Figure 6A). (y= (Bmax.x)/(Kd + x) where Bmax=1.5654 and Kd=178.4328) with 

R-squared 0.99. The linear increase in uric acid concentration (Figure 6B), as measured by the 
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proposed electrochemical system, correlates with the spiking of the biofluid (serum) highlighting 

the ability of the sensor to monitor minor fluctuations of the uric acid concentration. The three 

serum spikes (25, 50 and 100 u M urate) were chosen to show both the sensitivity to urate 

concentration changes and by doubling the spike each time allow a simple spiked-serum standard 

plot to be established. The relative change of the uric acid is highlighted as this is of most 

importance for the proposed application. 

Conclusions 

The carbon fibre system has shown to be capable of easy integration into a robust 

and versatile sensing system. Modification of the carbon network either pre or post 

lamination provides superior resolution and sensitivity of urate detection across a number 

of biomedical contexts. Periodic monitoring has been shown to be feasible and hence the 

system could facilitate short to moderate term wound management in a smart bandage 

application for the monitoring of bacterial metabolism of uric acid. Hence, in addition to 

the in-vitro quantification of uric acid in common biofluids this direct electrochemical sensor has 

proven successful for the detection of uric acid in blister/wound fluid, a previously unexplored 

application, and the closest to a truly in-vivo uric acid carbon fibre sensor. The only thorough 

investigation using carbon fibre electrodes to measure uric acid in biofluids (serum) [32] was 

performed using much larger electrode diameters (Typically 5mm - 25x greater surface area!) 

and using diluted serum samples for the analysis, however, the proposed design offers similar 

specificity, and due to having a much smaller surface area, substantially less uric acid would be 

metabolised by the electrochemical oxidation (via detection) thereby cause minimal affects on 

wound physiology. 
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Given the reagent-less and stable nature of the sensors proposed within, there are no 

issues with stability or storage conditions unlike enzyme based-sensors and throughout this 

investigation the batch produced sensors had shown no indications of instability or degradation. 

Longer term studies of shelf life would however be required but are beyond the scope of the 

present preliminary - proof of concept investigations presented herein. The ease with which 

the sensor can be fabricated, the unambiguous and sensitive nature of the signal is clearly 

an advantage over conventional urate measurements systems. Therefore the proposed 

electrochemical system clearly proffers a strong foundation for quantitative smart 

bandage technologies. 
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Figure Legends 

Figure 1. A) Schematic of the lamination process and B) the prototype sensing assembly. (1) 

wound aperture, (2) adhesive plaster backing, (3) insulating laminate, (4) carbon fibre 

sensor, (5) sensing window, (6) cellulose acetate barrier, (7) combined Ag/AgCl 

reference/counter electrode, (8) contacts to measuring device. 

Figure 2. Scanning electron micrograph of the carbon fibre mesh / laminate composite. 

Figure 3. Square wave voltammogram comparing the response of an untreated carbon fibre in 

equimolar 100 u M U A and A A , with an anodized electrode in 100 u M U A and 2.2 

m M A A 

Figure 4. A) Square wave voltammograms detailing the response of the untreated carbon fibre 

(dashed line) and the anodized fibre (after 15 and 30 min pre-treatment) towards 

whole blood. B) Response of 400 u M urate in the presence and absence of 100 u M 

Tryptophan. 

Figure 5. A) Square wave voltammograms detailing the response of an anodized carbon fibre 

sensing assembly towards human serum. B) Influence of cellulose acetate on the 

periodic response monitoring of urate in serum. C) Response of the pre-treated, 

cellulose acetate coated, sensor towards blister fluid. 

Figure 6. A) Calibration plot, with data, for the quantification of uric acid (in pH 7 buffer) using 

an anodized carbon fibre sensor. B) Uric acid measurements in a serially spiked (25, 

50 and 100 u M urate) serum sample 
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Figure 1. A) Schematic of the lamination process and B) the prototype sensing assembly. (1) 

wound aperture, (2) adhesive plaster backing, (3) insulating laminate, (4) carbon fibre sensor, (5) 

sensing window, (6) cellulose acetate barrier, (7) combined Ag/AgCl reference/counter electrode, 

(8) contacts to measuring device. 
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SEI 2.0kV X85 100jum WD 16.7mm 

Figure 2. Scanning electron micrograph of the carbon fibre mesh / laminate composite. 
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Figure 3. Square wave voltammogram comparing the response of an untreated carbon fibre in 

equimolar 100 |oM U A and A A , with an anodized electrode in 100 \iM U A and 2.2 m M A A (pH 

7.0) 
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Figure 4. A) Square wave voltammograms detailing the response of the untreated carbon fibre 

(dashed line) and the anodized fibre (after 15 and 30 mins pre-treatment) towards whole blood. B) 

Response of 400 |oM urate in the presence and absence of 100 |oM tryptophan. 
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Figure 5. A) Square wave voltammograms detailing the response of an anodized carbon fibre 

sensing assembly towards human serum. B) Influence of cellulose acetate on the periodic 

response monitoring of urate in serum. C) Response of the pre-treated, cellulose acetate coated, 

sensor towards blister fluid. 
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Figure 6. A) Calibration plot, with data, for the quantification of uric acid (in pH 7 buffer) using 

an anodized carbon fibre sensor. B) Uric acid measurements in a serially spiked (25, 50 and 100 

u M urate) serum sample 
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