
Hardware Accelerated
Computer Graphics

Algorithms

Daniel Thomas Rhodes

May 2008

A thesis submitted in partial fulfilment of the requirements of Nottingham Trent
University for the degree of Doctor of Philosophy

School of Science and Technology
Nottingham Trent University

Clifton Lane
Nottingham
NG11 8NS

http://www.ntu.ac.uk/

Table of ContentsTable of Contents

Chapter 1: Introduction...1

Chapter 2: Overview of Graphics Hardware............................5

2.1 The Fixed Function Pipeline... 6

2.2 The Programmable Pipeline..8

2.2.1 Shader Model 3... 11

2.2.2 High Level Shader Languages.. 11

2.2.2.1 Alternatives..14

2.2.2.2 Advantages and Disadvantages... 15

2.3 Life at the Bleeding Edge... 17

2.3.1 Precision..20

Chapter 3: Depth of Field..24

3.1 What is Depth of Field?.. 27

3.2 Existing Solutions... 31

3.2.1 Blurring by Multiple Viewpoints.. 31

3.2.1.1 Blurring by Multisampling.. 32

3.2.1.2 Ray Tracing... 33

3.2.2 Blurring Dependant on Depth... 34

3.3 New Depth of Field Implementation.. 37

3.4 Results...50

3.4.1 Software.. 50

3.4.2 Hardware... 52

3.4.2.1 A-Buffers... 52

3.4.2.2 B-Buffers... 53

3.5 Conclusions...55

Chapter 4: Texture Mapping and Aliasing..............................58

4.1 The Aliasing Problem... 63

4.1.1 Types of Aliasing...65

4.1.1.1 Edge Aliasing...66

4.1.1.1.1 Supersampling... 66

4.1.1.1.2 Multisampling..67

4.1.1.2 Texture Aliasing...69

4.2 Existing Solutions... 73

4.2.1 MIP Mapping.. 73

4.2.2 Bilinear Filtering... 77

4.2.3 Trilinear Filtering.. 79

4.2.4 “Brilinear” and “Trylinear” Filtering.. 81

4.2.5 RIP Mapping... 85

4.2.6 Anisotropic Filtering... 86

4.2.7 Elliptical Weighted Average.. 90

4.2.8 Texram...93

4.2.9 Feline...94

4.2.10 Clamping... 95

4.2.11 Texture Potential MIP Mapping.. 98

4.2.12 Conclusions... 99

4.3 Fourier Textures.. 99

4.3.1 Fourier Textures Technique...101

4.3.2 Results... 109

4.3.3 Conclusions... 114

4.4 Fourier Texture Filtering... 114

4.4.1 Fourier Texture Filtering Technique..115

4.4.2 Texture Selection... 119

4.4.3 Results... 129

4.4.3.1 Software...135

4.4.3.2 Hardware... 135

4.4.3.2.1 Theoretical Performance..139

4.4.3.2.2 Memory utilisation...139

4.4.3.2.3 Samples and bandwidth... 143

4.4.3.2.4 Observed Performance...150

4.4.3.2.5 Visual Results.. 157

4.5 Conclusions...183

Chapter 5: Bump Mapping...188

5.1 Existing Solutions... 189

5.1.1 Emboss Bump Mapping..189

5.1.2 Normal Mapping... 192

5.1.3 Environment Mapped Bump Mapping..196

5.1.4 Parallax Mapping.. 197

5.1.5 Displacement Mapping... 200

5.2 Anti-Aliased Bump Mapping..202

5.3 Super Bump Mapping... 207

5.3.1 Efficient anti-aliased bump mapping.. 207

5.3.2 Super Bump Mapping Technique..210

5.4 Results...213

5.4.1 Visual Results..213

5.4.2 Performance.. 220

5.5 Conclusions...222

Chapter 6: Conclusions and Future Work.............................223

References... 230

Appendices.. 247

Appendix A:Software Frequency Tests...248

Appendix B:Hardware Frequency Tests... 265

Appendix C:Typical Video Game Scenes...286

Appendix D:Histograms... 291

Appendix E:Textures in Fourier Space... 301

Appendix F:Super Bump Mapping Images.. 303

Appendix G:Super Bump Mapping Performance Graphs..316

Appendix H:Shader Code extracts..319

AbstractAbstract
he advent of shaders in the latest generations of graphics hardware, which has

made consumer level graphics hardware partially programmable, makes now an

ideal time to investigate new graphical techniques and algorithms as well as attempting

to improve upon existing ones.

T

This work looks at areas of current interest within the graphics community such as

Texture Filtering, Bump Mapping and Depth of Field simulation. These are all areas

which have enjoyed much interest over the history of computer graphics but which

provide a great deal of scope for further investigation in the light of recent hardware

advances.

A new hardware implementation of a texture filtering technique, aimed at consumer

level hardware, is presented. This novel technique utilises Fourier space image filtering

to reduce aliasing. Investigation shows that the technique provides reduced levels of

aliasing along with comparable levels of detail to currently popular techniques. This

adds to the community's knowledge by expanding the range of techniques available, as

well as increasing the number of techniques which offer the potential for easy

integration with current consumer level graphics hardware along with real-time

performance.

Bump mapping is a long-standing and well understood technique. Variations and

Daniel Rhodes i

extensions of it have been popular in real-time 3D computer graphics for many years. A

new hardware implementation of a technique termed Super Bump Mapping (SBM) is

introduced. Expanding on the work of Cant and Langensiepen [1], the SBM technique

adopts the novel approach of using normal maps which supply multiple vectors per

texel. This allows the retention of much more detail and overcomes some of the aliasing

deficiencies of standard bump mapping caused by the standard single vector approach

and the non-linearity of the bump mapping process.

A novel depth of field algorithm is proposed, which is an extension of the authors

previous work [2][3][4]. The technique is aimed at consumer level hardware and

attempts to raise the bar for realism by providing support for the “see-through” effect.

This effect is a vital factor in the realistic appearance of simulated depth of field and has

been overlooked in real time computer graphics due to the complexities of an accurate

calculation. The implementation of this new algorithm on current consumer level

hardware is investigated and it is concluded that while current hardware is not yet

capable enough, future iterations will provide the necessary functional and performance

increases.

Daniel Rhodes ii

AcknowledgementsAcknowledgements
hanks to Richard Cant and Caroline Langensiepen for being always available

and always helpful, despite heavy schedules and administrative headaches.

Helen Knight, for putting up with this research taking over my life for so long. Al

Denby, my desk neighbour, for having suffered similar pains and shown that there is

light at the end of the tunnel. Jonathan Townsend, who despite sitting through my stress

fuelled rants still has all this to look forward to. The examiners, Andy Day and Peter

Fitzgerald. Finally thanks to NVIDIA, ATI and Microsoft for their lack of

documentation giving me plenty to do.

T

Daniel Rhodes iii

Chapter 1: Introduction

Chapter 1: Chapter 1: IntroductionIntroduction
ames and simulations form a multi-billion dollar section of the entertainment

industry, with 106.37 million GPUs1 sold worldwide in the final quarter of 2007

[5] and a total of $8.64bn worth of games sold in the US alone during 2007 [6]. Their

increasing popularity is partly due to the ever evolving sophistication of computer

rendered visual images; which is driven by developments in consumer level graphics

hardware in both the PC2 and console sectors.

G

Over recent years computer graphics hardware for the consumer market has developed

at a pace which is well above that defined by Moore's law [7]. Moore's law is

commonly cited with reference to the rapidly continuing advance in computing

performance per unit cost, as the increase in transistor count is also a rough measure of

processing performance. Therefore according to Moore's law, the performance per unit

cost, approximately doubles every two years. With graphics hardware this rapid

advancement is largely due to the push towards what NVIDIA has termed as “Cinematic

Computing” [8]; essentially by this they mean that they are striving for real-time

computer graphics to approach the type of effects which have previously only been

available with pre-rendered techniques such as ray-tracing.

In turn, this has made possible recent advances, such as the current generations of

1 Graphics / Graphical Processing Unit also known as the VPU or Visual Processing Unit.
2 Personal Computer

Daniel Rhodes 1

Chapter 1: Introduction

programmable GPU’s. This programmability comes in the form of shaders; which have

been prevalent in graphics hardware since 2001, when the NVIDIA GeForce3 was

launched. As such shaders are a relatively new development which are still in their

infancy; it has yet to be seen just how far they can be pushed and what types of

graphical algorithms best suit the new hardware structure they provide.

Shaders provide the programmer with greater flexibility by allowing them to define

vertex and / or fragment (pixel) shader programs which can be run on any supporting

hardware. For example, they allow the programmer to replace the old style fixed

function lighting with shader programs which are able to perform more advanced

lighting techniques. So where previously the only options available may have been, for

example, Gouraud shading [9], the programmer now has the option to create their own

effects such as anisotropic lighting [10] or cell shading3 [11].

This ongoing “quest for realism” is leading to the requirement for much more advanced

and complex techniques in computer graphics systems. As such a great deal of research

and development time is invested in researching possible new uses and techniques for

shaders by hardware vendors such as NVIDIA and ATI, API maintainers such as

Microsoft and SGI, as well as by games and simulation developers. Much research into

new and improved techniques is devoted to simulation of real world optical and lighting

effects. One such optical effect is the depth of field phenomenon, which has yet to be

modelled with any great degree of accuracy in real-time computer graphics. Other

desirable techniques include long standing issues within computer graphics such as

3 Also known as cartoon rendering.

Daniel Rhodes 2

Chapter 1: Introduction

texture filtering, which currently offers an unfortunately large trade off between quality

and performance on current hardware, and bump mapping, which; while being a long-

standing and well established process still has problems caused by previous hardware

restrictions and the tendency of developers to use traditional tried and tested methods

despite their known defects.

The advent of shaders in the latest generations of GPU’s, making consumer level

graphics hardware partially programmable, makes now an ideal time to investigate new

techniques and attempt to improve upon existing ones. This can be achieved by taking

advantage of the new programmable architectures to create new techniques,

implementing techniques previously made impossible by hardware restrictions and

improving upon existing techniques.

This work looks at several of these current areas of interest within the graphics

community including Texture Filtering, Bump Mapping and Depth of Field simulation.

These are described below.

A novel depth of field algorithm is presented, which is an extension of the authors

previous work [2][3][4]. The technique is aimed at consumer level hardware and

attempts to raise the bar for realism by providing support for the “see-through” effect.

This effect is a vital factor in the realistic appearance of simulated depth of field and has

been overlooked in real time computer graphics due to the complexities of creating a

convincing simulation of it.

Daniel Rhodes 3

Chapter 1: Introduction

A new hardware implementation of a texture filtering technique, aimed at consumer

level hardware, is also presented. The novelty of this technique lies in the utilisation of

programmable consumer level hardware combined with the use of Fourier space to aid

filtering, and hence reduce aliasing. The technique provides reduced levels of aliasing

compared to many currently popular techniques along with comparable levels of detail

retention. This technique adds to the communities knowledge by expanding the range of

techniques available which have the potential to offer real-time performance along with

easy integration with current and future hardware.

Bump mapping is a long-standing and well understood technique, variations and

extensions of it have been popular in real-time 3D computer graphics for many years. A

new hardware implementation of a technique termed Super Bump Mapping (SBM) is

presented. Expanding on the work of Cant and Langensiepen [1], the SBM technique

adopts the novel approach of using normal maps which contain information about

multiple vectors per texel. This allows the addition and retention of much more detail

into a standard normal map and overcomes some of the aliasing deficiencies which are a

common problem with bump mapping. These deficiencies are often caused by the

standard single vector approach and the non-linearity of the bump mapping process,

more detail is provided on this in Chapter 5.

These techniques are presented in chronological order of investigation, beginning with

Depth of Field, then Fourier textures and finally Super Bump Mapping.

Daniel Rhodes 4

Chapter 2: Overview of Graphics Hardware

Chapter 2: Chapter 2: Overview ofOverview of
Graphics HardwareGraphics Hardware

raphics hardware provides the means to convert 3D data into 2-dimensions for

display on a computer monitor or television. This is done by processing and

outputting scene data a pixel at a time. The pixel data is often divided up by polygons4

and polygon vertices within the hardware for processing convenience and to aid

parallelism.

G

Modern graphics hardware comes in two main variates, graphics cards and on-board

graphics. On-board graphics is a term used to describe graphics chips which are

integrated into a computers motherboard, this type of graphics hardware is generally

considered basic and not up to the demands of modern games and simulations. Graphics

cards on the other hand generally provide the higher end of the performance spectrum

and can be found mainly in gaming PCs. Although even modern games consoles use

graphics processors, which are derived from high-end PC graphics card processors.

There are currently two main methods within most types of consumer level graphics

hardware for processing polygon data: the older style fixed function pipeline, as well as

the newer and more flexible programmable pipeline. More detail can be found in

Sections 2.1 and 2.2, both methods are also discussed by Rhodes et al. [12].

4 Usually triangles in modern systems.

Daniel Rhodes 5

Chapter 2: Overview of Graphics Hardware

2.1 2.1 The Fixed Function PipelineThe Fixed Function Pipeline

he fixed function pipeline is one of two methods available to the API's 5 for

handling vertex and pixel processing along with any transformations, lighting

and textures that are required by the scene. While the Fixed function pipeline is being

rapidly replaced by the programmable pipeline, it remains an important aspect of

graphics hardware evolution and for a substantial period of time represented the only

option available to games and simulation developers.

T

Figure 1 [13] illustrates some of the many processes involved throughout the fixed

function pipeline. The first task of the fixed function pipeline is to apply any

transformations that are required to the geometry. World, View and Projection

transformations are applied to the incoming vertices. This positions the geometry

appropriately within the co-ordinate system being used. World transformations change

the co-ordinates from model space, where points are defined relative to the origin of the

model, to world space; where points are defined relative to an origin common to all

models (objects) within the scene. View transformations locate the viewer within world

space and transform the vertices to camera space; this places the viewer (camera) at the

origin of world space. Projection transformations usually handle scaling and perspective

translation; however this is not necessarily the case.

Once all the geometry transformations have been performed then clipping and scaling

can take place. Clipping essentially removes any excess from the image that exceeds the

5 Application Programming Interface.

Daniel Rhodes 6

Chapter 2: Overview of Graphics Hardware

bounds of the viewport (for example: anything that overlaps the boundaries of the

screen) then the results are passed along to the rasteriser6.

The fixed function pipeline supports various forms of lighting usually including Diffuse

and Specular lighting models along with Flat and Gouraud shading. Fixed function

lighting, under DirectX, is discussed further by Dempski, 2002 [15]. The fixed function

pipeline also supports basic texture mapping, as well as various features that go hand in

hand with texture mapping; including MIP maps and texture blending. Fixed function

texturing, under DirectX, is covered in greater depth by Dempski, 2002 [8].

These are all quite efficient at their allotted tasks due to the fact they are designed and

optimised specifically for these operations. However it must be remembered that this

comes at a cost, they are simply set tasks and pre-defined routines. Outside the realms

of 'normal' applications very little in the way of customisation can be done. This makes

the fixed function pipeline a very inflexible solution given current demands for varied

6 Rasterisation[14] is the process of taking an image described in a vector graphics format (shapes) and
converting it into a raster image (pixels or dots) for output on a video display or printer.

Daniel Rhodes 7

Figure 1: The Fixed Function Pipeline [13]

Chapter 2: Overview of Graphics Hardware

and complex effects asserted by the activities of the games and simulation industries,

such as those outlined by the GPU Gems series of books [16].

2.2 2.2 The Programmable PipelineThe Programmable Pipeline

he programmable pipeline is a relatively new development and is designed to

replace the old style fixed function pipeline by providing greater flexibility and

programmability through new programmable technology known as shaders. Multiple

shader programs can be combined within the programmable pipeline to achieve various

effects and perform many different functions. Figure 2 demonstrates how the fixed

function and programmable pipelines fit within the whole graphics architecture as

defined by Microsoft [17]. As can be deduced from Figure 2 one pipeline can be used as

a direct replacement for the other, but the two pipelines cannot be used wholly in

conjunction with each other.

T

The programmable pipeline consists mainly of Vertex and Fragment7 shaders, and is a

direct result of a panel discussion about the future of graphics hardware undertaken as

part of SIGRAPH '99 [8]. Until the advent of the programmable pipeline consumer level

graphics hardware was restricted to a fixed function-based system. As previously

described this meant that the only options available to games and simulation developers

were those hard-wired into the graphics hardware by the hardware vendors. This also

had the disadvantage that hardware from different vendors could have a completely

different set of options and even provide different functionality given the same options

7 Also known as pixel shaders.

Daniel Rhodes 8

Chapter 2: Overview of Graphics Hardware

and API calls. Obviously this restricted the functions available to whatever the hardware

manufacturers and API maintainers deemed necessary and allowed very little freedom

for the games and simulation developers.

Shaders present the programmer with greater flexibility by enabling them to define

vertex and/or fragment shader programs which can be run on any supporting hardware.

For example, they allow the programmer to replace the old style fixed function lighting

with shader programs. So where previously the only options available may have been,

for example, Gouraud shading [9], the programmer now has the option to create their

own effects such as anisotropic lighting [10] or cell shading [11]. Shaders essentially

replace the fixed function pipeline of a standard, pre-Geforce3, graphics card by

providing programmability. This can be demonstrated by comparing Figure 1 [13] to

Figure 2 [17]. However, fixed functions can still be used in conjunction with the

majority of, but not all, shader generations. Shader Model 3, for example, cannot be

used in conjunction with any fixed function elements [18].

Daniel Rhodes 9

Figure 3: The Programmable Pipeline (Shader Model 3)
[13]

Figure 2: Graphics Pipeline [17]

Chapter 2: Overview of Graphics Hardware

NVIDIA were the first to develop this new direction in graphics on consumer level

hardware. This was in the form of the GeForce3 [19]; which supported shader model 1.1

(pixel shader 1.1 and vertex shader 1.1). While this provided a much greater level of

control to the programmer than ever before possible on consumer level graphics

hardware it did cause the problem of increased development times. This was due mainly

to the fact that until relatively recently (the introduction of the first HLSL8 in 2003 [20]:

this is discussed in detail in section 2.2.2) shaders had to be coded directly in shader

assembly language. Thus limiting the scope of possible applications due to the

specialised and complex nature shader programs and their assembly like language. In

turn, this contributed to long development times and other complications inherent with

assembly language programming in general. Considered with the faster than Moore’s

law progression of GPU technology [21] this meant developers simply could not keep

pace with the rapid development of the technology. This posed quite a problem,

particularly when the difficulties inherent with assembly language programming are

compounded by the complexity of many graphical algorithms; yet these shaders were

designed to encourage realism on consumer level hardware.

In an attempt to alleviate this problem NVIDIA, Microsoft and SGI9 all developed their

own High Level Shader Languages; Cg, MSHLSL, and GLSL respectively. These

HLSL’s aim to have the same impact on Shader Assembly language that C and other

high-level languages had in replacing assembler as the development tool of choice.

HLSL’s are designed to make it easier to map algorithms into code, as they provide a

much more intuitive way for a human programmer to view the operations of a shader.

8 High Level Shader Language
9 Silicon Graphics, Inc.

Daniel Rhodes 10

Chapter 2: Overview of Graphics Hardware

2.2.1 2.2.1 Shader Model 3Shader Model 3

hader model 3 is the current standard and provides many benefits over previous

incarnations, including but not exclusive to more available instructions and

greater floating point precision10.

S

Shader Model 3 has been required by DirectX since version 9c, and as such any card

wishing to claim DirectX compliance will have to support all the features defined in the

Shader Model 3 standard. Previous versions of DirectX 9 only required Shader Model 2.

NVIDIA [22] provides some comparisons between Vertex Shader 2, Vertex Shader 2a

and Vertex Shader 3 as well as providing comparisons between Pixel Shader 2, Pixel

Shader 2a, Pixel Shader 2b11 and Pixel Shader 3.

2.2.2 2.2.2 High Level Shader LanguagesHigh Level Shader Languages

g (C for graphics) is NVIDIA’s high level shader language and was developed in

partnership with Microsoft; this partnership also produced Microsoft high level

shader language (MSHLSL12). The two languages are virtually identical; Cg is actually

a superset of MSHLSL [23]. The major difference between Cg and MSHLSL is the fact

that the MSHLSL is DirectX specific, whereas Cg will happily operate within both

DirectX and OpenGL. Both languages are based on C and incorporate some elements of

C++, conversely due to the constraints inherent with shader programming much of the

C

10 See [22] and [18] for a more comprehensive look at shader models.
11 Note there is no Vertex Shader 2b.
12 Although Microsoft simply call it HLSL, it shall be referred to as MSHLSL to avoid confusion.

Daniel Rhodes 11

Chapter 2: Overview of Graphics Hardware

functionality of C has been lost.

Since OpenGL 1.5 there has been another high level shader language available for use

with OpenGL. GLSL13 was included as part of OpenGL 1.5 in the form of official ARB

extensions, where previously it had only been available as unofficial extensions. GLSL

is OpenGL’s answer to MSHLSL, it is also based on ANSI C and again incorporates

elements from C++.

Cg was the first high level shader language to become widely available to developers

and was introduced to work with DirectX 8.1 and OpenGL 1.3, Cg is now many

iterations on and along with HLSL and GLSL is beginning to reach a greater level of

stability in its feature set.

A sample of Cg code and its assembly language equivalent extracted from a Phong

shader [25] are shown in Figure 4. As can be seen in this example code, two lines of Cg

equates to twenty-five lines of shader assembly. This illustrates the huge difference in

development and maintenance time that can be made by switching to a HLSL.

13 OpenGL Shader Language. See [24] for more detail on GLSL.

Daniel Rhodes 12

Chapter 2: Overview of Graphics Hardware

Daniel Rhodes 13

Figure 4: Example of the simplifications possible when using a HLSL, such as Cg,
compared to Shader Assembler [25]

Cg

…

float3 cSpec = pow(max(0, dot(Nf, H)), phongExp).xxx;

float3 cPlastic = Cd * (cAmbi + cDiff) + Cs * cSpec;

…

Assembly

…

RSQR R0.x, R0.x;

MULR R0.xyz, R0.xxxx, R4.xyzz;

MOVR R5.xyz, - R0.xyzz;

MOVR R3.xyz, - R3.xyzz;

DP3R R3.x, R0.xyzz, R3.xyzz;

SLTR R4.x, R3.x, {0.000000}.x;

ADDR R3.x, {1.000000}.x, - R4.x;

MULR R3.xyz, R3.xxxx, R5.xyzz;

MULR R0.xyz, R0.xyzz, R4.xxxx;

ADDR R0.xyz, R0.xyzz, R3.xyzz;

DP3R R1.x, R0.xyzz, R1.xyzz;

MAXR R1.x, {0.000000}.x, R1.x;

LG2R R1.x, R1.x;

MULR R1.x, {10.000000}.x, R1.x;

EX2R R1.x, R1.x;

MOVR R1.xyz, R1.xxxx;

MULR R1.xyz, {0.900000, 0.800000, 1.000000}.xyzz,

R1.xyzz;

DP3R R0.x, R0.xyzz, R2.xyzz;

MAXR R0.x, {0.000000}.x, R0.x;

MOVR R0.xyz, R0.xxxx;

ADDR R0.xyz, {0.100000, 0.100000, 0.100000}.xyzz,

R0.xyzz;

MULR R0.xyz, {1.000000, 0.800000,

0.800000}.xyzz, R0.xyzz;

ADDR R1.xyz, R0.xyzz, R1.xyzz;

…

Chapter 2: Overview of Graphics Hardware

2.2.2.1 2.2.2.1 AlternativesAlternatives

here are alternatives to shader assembly other than programming directly in a

HLSL: for example, ATI’s RenderMonkey. This is essentially an IDE14 designed

specifically for shaders, it provides methods to edit a shader and view the results within

the same workspace. RenderMonkey also provides many artist tools which can

minimise the amount of coding required.

T

Originally developed by 3D Labs and then taken over by ATI, RenderMonkey has been

designed to enable both artists and programmers to create and tweak shaders relatively

easily; Figure 5 provides an example of a typical RenderMonkey workspace.

While alternatives are now available, RenderMonkey deserves a special mention as it

was the first IDE of its type and was ATI’s answer to Cg. Where Cg was still simply a

14 Integrated Development Environment

Daniel Rhodes 14

Figure 5: RenderMonkey

Chapter 2: Overview of Graphics Hardware

shader language, RenderMonkey provided an IDE to encompass the whole shader

development process as well as a graphical interface onto existing API’s.

In its current incarnation, RenderMonkey supports both MSHLSL and GLSL but does

not claim to be Cg compatible. This should come as no surprise given that ATI’s and

NVIDIA’s rivalry is very well publicised. As such ATI are concerned about the

possibility of Cg becoming a standard, as this would put a significant amount of power

in the hands of its rival. This would be a particular problem for ATI given that versions

of the Cg compiler have been shown by ATI [26] to perform poorly in comparison to

MSHLSL on ATI based systems; when exactly the same code on an NVIDIA system is

much more reliable.

After ATI's acquisition of RenderMonkey, NVIDIA produced a response in the form of

the NVIDIA FX Composer15, unfortunately this is specific to MSHLSL development at

the time of writing. FX Composer currently provides no support for Cg, which may

come as a surprise to many and can perhaps be seen as an indicator of NVIDIA's future

direction in HLSL support.

2.2.2.2 2.2.2.2 Advantages and DisadvantagesAdvantages and Disadvantages

ll the HLSL’s discussed like to claim a certain amount of platform

independence. For example MSHLSL should have no problems running on

either NVIDIA, ATI or anyone else’s hardware (within Microsoft Windows) and Cg will

A
15 See [27] for more detail on FX Composer.

Daniel Rhodes 15

Chapter 2: Overview of Graphics Hardware

happily compile up to run on Windows or Linux based systems due to its compatibility

with OpenGL and DirectX.

Surely all this so called ‘platform independence’ can only be a good thing? Should it not

simply do what it has claimed and allow the same code to run on virtually any hardware

you care to throw at it and drastically reduce potential development times?

In reality the answer to the above question is not quite as simple as it may appear at

first. HLSL’s hide a large number of the complexities associated with shaders. Fragment

shaders in particular carry a lot of restrictions that are not inherently obvious while

coding in a HLSL; restrictions that could easily be picked up on while working in

shader assembly language. For example, Cg’s loop statements allow the programmer to

write code which will be executed a constant number of times on the hardware. This can

cause unforeseen results; as in the case of DirectX 8 Vertex Shaders (Vertex Shader 1.1)

which do not allow looping. In this case when the code is compiled the Cg compiler

unrolls the loop so that the final shader program contains the same set of instructions

repeated as many times the loop specified [28]. This means that a loop which contains

the equivalent of 2 assembly level instructions, repeated 10 times in Cg will balloon to

20 instructions in the compiled shader assembly. In this manner it would be very easy to

exceed the hardware platform's instruction limits (or worse) without the programmer

realising, at least until the code is compiled, potentially wasting valuable development

time.

Daniel Rhodes 16

Chapter 2: Overview of Graphics Hardware

Debugging is another interesting topic within the world of HLSL’s. Microsoft provide

debugging support for MSHLSL in the form of an add-on for Microsoft Visual Studio.

Both ATI’s RenderMonkey and NVIDIA’s FX Composer also provide forms of debug

support for MSHLSL including, for example, a disassembler within RenderMonkey and

a jump to error feature in FX Composer. Both also provide the advantage of being able

to see the results of shader changes instantly within the IDE unlike within more

traditional environments such as Microsoft's Visual Studio. For a further discussion of

shader related issues including debugging see Rhodes et al. [12][29].

If used carefully alongside the debugging tools available, HLSL’s can make the whole

process of developing shaders much easier and quicker. HLSL’s seem to be the future of

shader development and, as intended, have begun to replace shader assembly as the

development language of choice for shaders.

2.3 2.3 Life at the Bleeding EdgeLife at the Bleeding Edge

nfortunately, using the latest features of newly developed hardware and

software comes at a price: unspecified hardware features, unstable drivers and

unsupported features are just some of the pitfalls which developers face when working

at this level. These issues are often due to the developers unavoidable dependency on

the relatively fluid drivers and compilers supplied by the hardware vendors. As

discussed by Rhodes et al. [29] this also impacts on teaching methods, objectives and

outcomes.

U

Daniel Rhodes 17

Chapter 2: Overview of Graphics Hardware

Discrepancies between driver versions are often a particularly difficult problem, as even

slight changes between versions can have drastic knock on effects. Especially for finely

tuned programs at the level dealt with by the techniques presented here. It can often

become impossible to detect whether issues are caused by problems within the code

itself, by a hardware feature, or simply by a quirk of the current driver version.

This type of issue has cropped up many times during the undertaking of this research.

However, given enough time it is usually possible to work around these problems.

Though it is possible to work around such issues, it is rarely possible to ascertain

whether an issue is caused by a driver related problem or is an error in the code; unless

the issue is subsequently resolved by the vendors. This obviously necessitates the

removal of the appropriate work around, which in itself may not be an easy task to

isolate and correct due to the nature of not knowing whether the fix was applied to

accommodate a driver fault or a genuine error.

One example of an error that was identifiable as a proven driver problem was the failure

of the Cg compiler in some versions of the NVIDIA drivers. Cg compiler version

1.3.0001 often failed to create appropriate ASM from a GLSL source, particularly when

loops are employed. Unfortunately, the effect this error had on the visual output was

severe and noticeably incorrect, thus causing a painstaking re-evaluation of the source

material to be carried out before the error was eventually identified as being driver

related. This issue is demonstrated by Figure 6 and Figure 7. The examples illustrate the

problem by showing the first five lines of output from the same GLSL source, as

Daniel Rhodes 18

Chapter 2: Overview of Graphics Hardware

compiled by two different compiler versions.

Figure 7 shows the correct result provided by compiler version 1.5, while Figure 6 in

comparison demonstrates the missing assembly and misinterpreted instructions which

plagued compiler version 1.3. While such errors appear obvious when the correct

version is shown next to the incorrect, these issues are in fact rather difficult to diagnose

when faced with just the original incorrect output. Often the issues facing the developer

are much more subtle than those depicted by the examples chosen for Figure 6 and

Figure 7.

Other examples of notable issues includes those of Forceware release 70 which suffered

Daniel Rhodes 19

Figure 7: Cg Compiler Version 1.5

TEX R1, c[1].w, texture[0], 1D;

TEX R0, c[0], texture[0], 1D;

DDXR R2.zw, fragment.texcoord[0].xyxy;

MULR R3.xy, R2.zwzw, c[0].y;

DDYR R2.zw, fragment.texcoord[0].xyxy;

Figure 6: Cg Compiler Version 1.3.0001

TEX R0.xz, c[0].z, texture[0], 1D;

MOVR R2.w, R0.x;

MULR R0.x, fragment.texcoord[0], c[0];

MOVR R3.x, R0.z;

FLRR R2.x, R0;

Chapter 2: Overview of Graphics Hardware

from large memory leaks, and inaccurate texture co-ordinates in some Forceware

versions prior to 101.34. In some cases processing shader code under Forceware 70

causes over 2 gigabytes of page file usage from an original source file of well under 1

megabyte when compiling and linking Shader model 3 based GLSL code. The texture

co-ordinate issue required minor adjustments, in the region of 0.00001%, to be made in

order to correct the inaccuracy of texture co-ordinate calculations. This problem also

has the effect of disguising similar hardware limited accuracy issues which affect the

NVIDIA GeForce 6 and 7 series.

2.3.1 2.3.1 PrecisionPrecision

he main problem encountered was that of calculation precision. For example,

while NVIDIA advertise the 6800 platform as supporting full 32-bit precision,

the test results presented below show that this cannot be the case. The “full floating

point accuracy” advertised should theoretically provide the same results as the same

calculations run on a CPU and processed in floating point precision to ensure a fair

comparison. From the results it is possible to show that what NVIDIA actually deliver is

32-bit calculations and almost 32-bit floating point precision.

T

This is likely due to the fact that modern CPUs, such as AMD's16 Athlon series or Intel's

Pentium series, use 80-bit extended precision for all floating point calculations. These

extended precision calculations are subsequently rounded to give the final result to

whatever precision is requested. The NVIDIA platform on the other hand seemingly

16 Advanced Micro Devices

Daniel Rhodes 20

Chapter 2: Overview of Graphics Hardware

does not have this 80-bit extended precision facility. As a consequence the 6800 is

slightly less accurate than the average CPU for the same calculations. It is proposed that

this is due to the 6800 performing calculations directly in 32-bit floating point precision,

and hence some accuracy is lost. See LaMothe 2003 [30] for an in depth discussion of

modern CPU FPUs17.

Consequently, this could prove a problem for the sine and cosine calculations required

for many of the more advanced graphical techniques, which may otherwise be suitable

for implementation in shaders. Such techniques can be quite sensitive to accuracy

problems. Particularly when repeating the same calculations in loops, meaning any

errors are compounded.

As such it became necessary to run tests to clarify the exact situation with regards to

comparative accuracy. A series of tests were run, in both software and hardware, to

17 Floating-Point Unit

Daniel Rhodes 21

Figure 8: Cosine Inaccuracy

0.
00

4
0.

04
0

0.
07

6
0.

11
2 0.
14

8
0.

18
3

0.
21

9
0.

25
5

0.
29

1
0.

32
6

0.
36

2
0.

39
8

0.
43

3
0.

46
9

0.
50

5
0.

54
1

0.
57

6
0.

61
2

0.
64

8
0.

68
3

0.
71

9
0.

75
5

0.
79

1
0.

82
6

0.
86

2
0.

89
8

0.
93

4
0.

97
0

1.
00

6
1.

04
2

1.
07

8
1.

11
4 1.
15

0
1.

18
6

1.
22

2
1.

25
8

1.
29

4
1.

33
0

1.
36

6
1.

40
2

1.
43

8
1.

47
4

1.
51

0
1.

54
6

-3.0E-7

-2.5E-7

-2.0E-7

-1.5E-7

-1.0E-7

-5.0E-8

0.0E+0

5.0E-
8

1.0E-

1.5E-

2.0E-
7

2.5E-
7

3.0E-

Cosine

Manual NVIDIA

X

D
el

ta
 f

ro
m

 A
M

D

Chapter 2: Overview of Graphics Hardware

determine exactly how accurate the GPU calculations are. Figure 8 and Figure 9 show

the results for this on the test system, consisting of an AMD Athlon CPU and an

NVIDIA 6 series GPU.

Both sine and cosine calculations were performed in software on the AMD platform to

determine values which could be used to compare floating point precision against the

NVIDIA platform. It was concluded that the AMD produced values to be accurate

enough for this task after close comparison with the values provided by Abramowitz

and Stegun [31] which are calculated to a precision of twenty three decimal places, and

hence are more accurate than most techniques would require. The AMD values are

proven to be very accurate for the 32-bit floating point calculations considered. When

compared against Abramowitz and Stegun [31] and considered as double precision

floating point calculations, they only deviated occasionally on the final decimal place;

much more accurate than the NVIDIA hardware allows.

Daniel Rhodes 22

Figure 9: Sine Inaccuracy

0.
00

4
0.

04
0

0.
07

6
0.

11
2 0.
14

8
0.

18
3

0.
21

9
0.

25
5

0.
29

1
0.

32
6

0.
36

2
0.

39
8

0.
43

3
0.

46
9

0.
50

5
0.

54
1

0.
57

6
0.

61
2

0.
64

8
0.

68
3

0.
71

9
0.

75
5

0.
79

1
0.

82
6

0.
86

2
0.

89
8

0.
93

4
0.

97
0

1.
00

6
1.

04
2

1.
07

8
1.

11
4 1.
15

0
1.

18
6

1.
22

2
1.

25
8

1.
29

4
1.

33
0

1.
36

6
1.

40
2

1.
43

8
1.

47
4

1.
51

0
1.

54
6

-2.5E-7

-2.0E-7

-1.5E-7

-1.0E-7

-5.0E-8

0.0E+0

5.0E-

1.0E-
7

1.5E-
7

2.0E-
7

2.5E-

3.0E-
7

Sine

Manual NVIDIA

X

D
el

ta
 f

ro
m

 A
M

D

Chapter 2: Overview of Graphics Hardware

The AMD results for the sine and cosine functions were then compared to the NVIDIA

sine and cosine functions as well as a manual method implemented in shaders. Figure 8

and Figure 9 give the deltas of both the NVIDIA and manual shader methods from the

AMD values. As can be seen from the graphs the manual method proved more

consistently accurate for any given value of x , despite using the same 32-bit floating

point hardware.

It can be concluded from this that NVIDIA do not calculate their sine and cosine

functions to the full 32-bit floating point precision available. However, it can be

conjectured that NVIDIA use look-up tables to improve calculation performance at the

expense of this accuracy. This is hinted at by the fact that that the manual version

consistently proved more accurate than the built in hardware method when running

under the same hardware limitations.

Daniel Rhodes 23

Chapter 3: Depth of Field

Chapter 3: Chapter 3: Depth ofDepth of
FieldField

he ongoing quest for realism requires increasingly advanced techniques in real-

time computer graphics systems, the majority of which aim to simulate or

closely approximate real life optical systems. One such optical effect is the depth of

field phenomenon, which has yet to be modelled with any great degree of accuracy in

real-time computer graphics.

T

The depth of field phenomenon is an optical effect which is best described in terms of

the human eye. When focusing on an object, the rays of light from that object are

refracted by the eye's lens directly onto the retina. This provides a sharp in-focus image.

Because of the way the eyes lens does this any rays of light from objects sufficiently far

away from the in focus plain will be focused either just in-front of or just behind the

retina. In turn, this causes blur circles to form of a size proportional to the source 's

distance from the point of focus. This is why the further away an object is from the

point of focus the more blurred it becomes. Rokita [32] provides a more in-depth look at

the physics behind the depth of field phenomenon.

Most computer graphics systems take the easy route out and ignore the depth of field

phenomenon altogether, opting instead to use the pinhole camera model, which

Daniel Rhodes 24

Chapter 3: Depth of Field

produces completely sharp images. By ignoring depth of field these systems are limiting

how realistic they can be. Without a good approximation of depth of field any computer

graphics system, no matter how advanced, will look synthetic. Humans are used to

seeing this effect all the time. As the world around us, viewed through our eyes, suffers

from depth of field effects. If realistic images are to be obtained in computer graphics,

all aspects of the eye need to be taken into account. Even those which may be described

as a deficiency of the natural optical system, like depth of field.

Systems that choose to ignore depth of field are starving themselves of an excellent

method for providing depth cues and diverting the viewers’ attention to areas of

importance. Cinematographers, and hence Hollywood films, have utilised the depth of

field phenomenon to great effect over the years [33]. It is used to divert the viewers’

attention to important aspects of the scene. If done properly these subtle cues are not

picked up consciously, and hence provide a very powerful special effect in the

Hollywood arsenal.

Possible uses for such an implementation of depth of field include military simulators

where depth cues are vitally important. One example of such military uses are flight

simulators, where the depth of field effect could provide the pilot with essential

information about things like target distance and size. Over the long term this would

potentially provide much more realistic simulations and hence better training

conditions. Naturally, this would have the effect of lessening the jump between

simulator and real life, which would provide numerous benefits. Particularly from a

Daniel Rhodes 25

Chapter 3: Depth of Field

military perspective as complex training scenarios could be worked on from the safety

of the base.

Current attempts at implementing real-time depth of field effects suffer from a number

of issues. The major problem with most current real-time solutions is a lack of support

for the see-through effect. This is the phenomenon of being able to see a sharp object

when viewed through a de-focused object. For example, NVIDIA [34] and ATI [35]

both provide solutions that do not support the see-through effect. Both these solutions

are based around a method similar to that proposed by Potmesil and Chakravarty in

1981 [36].

The lack of support for the see-through effect causes a visible aura around de-focused

objects, which results in an unnatural look. In many cases this situation is potentially

worse than having no depth of field effect at all, as objects that should be visible

become obscured.

Another popular solution is to use multiple discrete samples or multi-sampling, which is

discussed in detail in section 3.2.1.1. Microsoft [37] provides an example of one

solution which takes this route. The multisampling method has the advantage of

supporting the see-through effect; however multisampling throws up several other

issues. The most noticeable problem with most multisampling based depth of field

techniques is the multi image effect. This occurs when the number of samples is too

small, and results in a fuzzy appearance of images rather than actual blurring. Often

Daniel Rhodes 26

Chapter 3: Depth of Field

with multiple images being distinctly visible for lower sample numbers. Unfortunately

the only current solution which can provide enough samples to make this unnoticeable

is ray-tracing; but as this requires the sample points to be varied per-pixel it is not yet a

viable real-time effect.

3.1 3.1 What is Depth of Field?What is Depth of Field?

he depth of field phenomena is something experienced, perhaps unknowingly on

a conscious level, by everyone on a daily basis. When the eye focuses on a

particular object the area and objects around it are perceived as increasingly more

blurred the further they are away from the point of focus. This depth of field effect also

applies to other lens based optical systems such as photography.

T

The actual range in which the eye can see completely sharply is relatively small. The

eye is rather poor at distinguishing the detail of objects which are not directly on its

focal plane. The majority of what the eye sees is non-sharp and a large amount of image

enhancement is performed by the brain to get to the final image seen. For an example of

how much work the brain does after the eye sends its images for processing examine the

human eyes' blind spots, which few people realise exist until shown. Each eye has a

blind spot where the optic nerve meets the back of the eyeball. The brain fills in these

blind spots utilising image data from the surrounding area. For a practical example see

[38]. This emphasises the point that the eye can only see clearly directly in its' plane of

view, hence all the surrounding objects will appear blurred. Figure 10 gives an example

of Depth of Field in an optical system, the see-through effect is evident and its' impact

Daniel Rhodes 27

Chapter 3: Depth of Field

on the final image is plain to see. The in focus plane is clearly distinguishable as the

sharp area of the image, with the areas to the foreground and background being

increasingly blurred as the distance from the focal plain increases. In this particular

example the in focus plain is still visible, due to the see-through effect, despite being

potentially obscured by the area of the plant which precedes it in the image.

As observed by Rokita [32], Depth of Field is a direct result of the process of

accommodation; which is one of many depth cues that influence the way humans

perceive their surroundings. Figure 11 shows a visual example of how the depth of field

effect is created. The sharp image is created where the rays of light focus directly onto

Daniel Rhodes 28

Figure 10: Depth of Field in an optical system

Chapter 3: Depth of Field

the photoreceptor; this could be the film (in the case of photography) or the retina (in

the case of the human eye). In the eventuality that the rays of light focus in front of or

behind the photoreceptors (i.e. the image is de-focused) blur circles are created. Blur

circles are best explained by taking into account a single point of light as in Figure 11.

Taking Figure 11 as an example; if the rays from the light source are in focus then they

will converge on the view plane to create a sharp image. For example, in the eye the in-

focus rays will converge on the retina. However, if they are not in focus then the rays

will converge either in front of or behind the sharp image plane. In the case of the eye,

this would mean the defocused light rays are spread over an area which is dependant on

the source's distance from the focal plane. The brain fills in any missing information

from the de-focused light, which creates a blur circle. Obviously in the real world there

is much more than a single point light source, so many thousands of blur circles will

Daniel Rhodes 29

Figure 11: How the depth of field effect occurs

Chapter 3: Depth of Field

appear in any one particular optical image.

This effect is taken advantage of extensively in the worlds of film and photography, for

example films such as ‘The Lord of the Rings’ make heavy use of Depth of Field along

with various other techniques to draw the viewers’ attention to the important aspects of

a scene. This is not a new technique in cinematography however, Depth of Field effects

have been utilised over the years by many different directors ranging from Orson Welles

to Peter Jackson. Obviously this could also be used to similar effect in areas such as

computer games and simulations. However one of the main uses of the depth of field

phenomenon for computer graphics images would be to add realism to games and

Virtual Reality systems such as flight training simulators.

The problem with most current computer rendered images is that they are based on the

Daniel Rhodes 30

Figure 12: An example of a computer generated image without depth of field

Chapter 3: Depth of Field

pin-hole camera model. This means that each image is potentially infinitely sharp,

obviously taking into account practical limitations. This is demonstrated by the

screenshot shown in Figure 12, taken from the game Halo 3 [39], which does not use

any depth of field effects in game [40]. In Figure 12 it can be reasonably assumed that

the extreme rear of the image should at least be partially blurred. This is becoming more

of an issue as texture detail and draw distances improve, as this only adds to the

unnatural feel of a scene when depth of field effects are absent. So some method is

needed to create more realistic computer generated images by inclusion of a depth of

field effect.

3.2 3.2 Existing SolutionsExisting Solutions

urrently there are a number of solutions to this problem all of which have

shortcomings, these methods are discussed by Rhodes et al. [4] and expanded

upon in this section. A summary of existing solutions can also be found in GPU Gems

[41].

C

3.2.1 3.2.1 Blurring by Multiple ViewpointsBlurring by Multiple Viewpoints

his is by far the simplest approach to solving the depth of field problem. In

addition it is currently the most successful solution for real-time applications,

providing moderate results and supporting the see-through effect. The effect is achieved

by creating the image from multiple discrete viewpoints as demonstrated in Figure 13.

The image from each viewpoint is added to an accumulation buffer where the final

T

Daniel Rhodes 31

http://www.bungie.net/
http://www.bungie.net/
http://www.bungie.net/
http://www.bungie.net/

Chapter 3: Depth of Field

image is built up.

3.2.1.1 3.2.1.1 Blurring by MultisamplingBlurring by Multisampling

The multisampling method suffers a major flaw, the unwanted effect of multiple images

being clearly distinguishable. As demonstrated by Figure 14 this is due to the fact that

not enough samples have been used. The simple solution to this is to increase the

number of samples. However, increasing the level of blurring slightly drastically

increases the number of samples that are needed to help disguise this artefact. The

number of samples required even for a small level of blurring is potentially very large,

particularly with more complex images. Rendering the same scene multiple times is also

potentially very time consuming, obviously dependant on the complexity of the scene,

so a large number of samples will lead to a big performance hit in your application.

There is another problem with this method that is apparent from Figure 14; particularly

when compared with Figure 15. It can be seen that the effect created via multiple

images is not actually blurring of the image and is perhaps better described as adding

fuzziness to the image.

Daniel Rhodes 32

Figure 13: Sampling multiple viewpoints

Viewpoints
Rays of

light

Chapter 3: Depth of Field

3.2.1.2 3.2.1.2 Ray TracingRay Tracing

lurring by ray tracing is a form of blurring by multiple viewpoints; the major

difference is that ray tracing allows varying of the sample points pixel by pixel.

The most realistic depth of field effects can be obtained via ray tracing techniques,

where rays of light are traced from the viewpoint to the light source. The calculations

involved in ray-tracing make use of the physical properties of light. Figure 15 provides

an example of a ray traced image taken from the Pixar film Ratatouille.

B

Pixar, via their 3D rendering software RenderMan, have been using ray tracing since

2002 [42] and the first feature film made using the technique throughout was Cars [43].

Ray tracing does produce correct results. However, with current technology it is not

possible to perform such complex calculations in real-time at the kinds of resolutions

Daniel Rhodes 33

Figure 14: Depth of field by multi-sampling [37]

Chapter 3: Depth of Field

required for games and simulations. As such ray tracing is only of use for pre-processed

scenes such as the one shown in Figure 15.

3.2.2 3.2.2 Blurring Dependant on DepthBlurring Dependant on Depth

he basic premise of these systems is to create a blurring effect which is

dependant on depth, where the depth is usually taken to be the value of z or

1/ z . Examples of this type of system include work by Snyder and Lengyel. [44],

Rokita [32], and Potmesil and Chakravarty [36].

T

A variation of the Potmesil and Chakravarty method has been implemented by NVIDIA

[34], examples of which can be seen in Figures 16 and 17.

Daniel Rhodes 34

Figure 15: Depth of field by ray tracing

Chapter 3: Depth of Field

There are several problems with the method employed by NVIDIA. For example, some

of the objects within the scene appear to have an aura surrounding them; this is because

of the lack of support for the see-through effect. This is a common problem which

plagues the Rokita [32], Potmesil and Chakravarty [36], and similar, methods.

The aura artefact can be seen more clearly in ATI’s Depth of Field demonstration [35],

which is presented in Figure 18 with the focus plane on the chequered wall. This uses

virtually the same method as the NVIDIA example, with the exception that pixel shader

version 2.0 is preferred over the version 1.1 used by NVIDIA. This means that a much

higher level of blurring is achieved due to the extra instructions and resisters available.

Daniel Rhodes 35

Figure 16: NVIDIA Artefacts [34]

Chapter 3: Depth of Field

Snyder and Lengyel [44] get around this problem via the use of a layering system.

Assuming that the objects in question truly are on separate layers the see-through effect

is supported. However, Snyder and Lengyel’s system does have two major drawbacks.

Firstly the choice of which objects belong on each layer depends on hidden surface

removal considerations rather than depth. Hence correct ordering for use with depth of

field cannot be guaranteed. Also in order to be able to use Snyder and Lengyel’s system

Daniel Rhodes 36

Figure 18: ATI artefacts [35]

Figure 17: Depth of field by depth and image processing [34]

Chapter 3: Depth of Field

a non-standard method for hidden surface removal must be used. This causes a huge

problem as it would require an entirely new type of graphics rendering system and is

simply not practical for such a specialised requirement.

3.3 3.3 New Depth of FieldNew Depth of Field
ImplementationImplementation

 novel depth of field algorithm is presented, based on consumer level hardware.

The technique is designed to run in real time but without many of the major

problems identified previously. This provides an extension of previous work by Rhodes

et al. [3][2] which was inspired by the work of Chia et al. [45].

A

The first important aspect is the inclusion of a layering system similar to that proposed

by Snyder and Lengyal [44]. However in this case the layers are determined directly by

depth and not by hidden surface removal considerations used by Snyder and Lengyal.

This method guarantees that two objects rendered on the same level will have a similar

level of blurring, which was not the case with Snyder and Lengyal’s system.

Each pixel within the system consists of x , y and z values (assumed to be in the

form 1/ z) along with their associated colour values as per a standard z-buffer based

system. However, unlike a normal z-buffer based system; more than just the winning

pixel contributions from the depth test must be retained. This is because these values are

necessary if the ‘see-through’ effect is to be supported. These must be stored in a depth

Daniel Rhodes 37

Chapter 3: Depth of Field

of field A-buffer structure.

Schilling and Staßer [46] provide a description of a suitable A-buffer, however the

purpose in that case was quite different. They set out to solve the HSE (Hidden Surface

Elimination) problem on the sub-pixel level. As the A-buffer stores a contribution from

each pixel within the viewing frustum, rather than just that of the winning pixel from a

standard z comparison, the pixel data may now be read, layer-by-layer, from the front of

the A-buffer. Schilling and Staßer [46] state that the major difference between the A-

buffer and a traditional z-buffer is that where a z-buffer only retains one item per-pixel

the A-buffer retains a list of pixel contributions.

The retention of additional information required by Schilling and Staßer's A-buffer

system can cause performance issues. In order to combat this performance impact,

culling can be performed to remove redundant data. For example, any winning pixel

contribution from behind the focus plane can be ignored. Similarly any contributions at

a similar depth to the current winning pixel (but still behind it) can be ignored. These

culls should prove beneficial for a hardware based implementation of the algorithm.

The contents of the A-buffer are then blurred to varying degrees dependant on their

depth values relative to the focal plane of the system. The in-focus part of the image can

be determined by:

1
f
=

1
u


1
v

Daniel Rhodes 38

Chapter 3: Depth of Field

The resultant in-focus image will be at a distance v where the object in question is at a

distance u from a lens with a focal length f .

This is fine for the simple case where the system is focused on this object, however if

the system is not focused on this object more elements need to be taken into account.

The image plane of an out of focus object will be a distance p and the degree of

blurring is dependant on the circle of confusion. The circle of confusion can be defined

as “The image of a point source that appears as a circle of finite diameter because of

defocusing or the aberrations inherent in an optical system” [47]. In terms of the system

presented here: the size of the circle of confusion can be determined by the paths of the

rays of light which will pass through the edges of the ‘lens’ aperture and converge on

the focal point. As shown by the following formula, if the aperture a is taken, then the

the size of the circle of confusion C can be calculated:

C=
∣v− p∣

v
a

To illustrate this, Figure 19 provides a visual representation of the two preceding

formulae. C and p refer to the case where the image plane is closer to the aperture

than the focal plane and where C ' and p ' refer to the case where the image plane is

further away than the focal plane.

This blurring can be achieved via the use of two MIP-map style secondary buffers sets

known as the b-buffers. Each set of b-buffers is subdivided into depth levels, where one

set is used for the areas of the image in front of the focal plane and one for the areas

behind, this can be seen in Figure 20. The b-buffers start at the screen resolution (level

Daniel Rhodes 39

Chapter 3: Depth of Field

0) and finish at a resolution consistent with the maximum level of blur required by the

scene (level n). Two sets of b-buffers are required because pixel contributions in front of

the focal plane will have a different priority to those behind the focal plain when the

final image is generated by matting the contents of the b-buffers.

For each A-Buffer layer only the pixels which would usually be visible under standard

z-buffering are extracted. These pixels are then removed from consideration for

subsequent layers and added into a set of b-buffers. This process is then repeated for

each subsequent level of the A-buffer, each time taking only those pixels which win a

standard z-test and adding them to the appropriate depth level of the b-buffers.

Daniel Rhodes 40

Figure 19: Calculating the Circle of confusion

Chapter 3: Depth of Field

There are multiple b-buffers aligned either side of the pre-computed focus plane which

are divided into those sets nearer to the view position and those further away from the

view position than the focus plain. The b-buffers reduce in resolution as they move

away from the focal point, building up to two sets of MIP map style images such as

those in Figure 20. Where a reduction in the dimensions of the pixel data is needed, this

is done by means of a Gaussian filter, as this is convenient for reversing with an

equivalent Gaussian filter in later stages. Gaussian filters are useful as they are well

defined and commonly used as smoothing kernels for generating multi-scale

representations in computer vision and image processing [48], so their properties and

advantages are well known. A set of b-buffers is created for each layer of pixel

contributions extracted from the A-buffer. Despite being supported by Silicon Graphics

hardware for many years, the A-buffer must be approximated in this implementation

Daniel Rhodes 41

Figure 20: B-buffers

………………......

.....

………………......

.....

Layer 1Layer 1

Original
image

(Layer 0)

Front Back

Layer n Layer n

Chapter 3: Depth of Field

due to a lack of support in modern consumer level hardware. This is done via a process

similar to that which NVIDIA term “Depth Peeling” [49], an example of which is

presented in Figure 21.

The basic premise of Depth Peeling [49] is that each pass across the scene allows us to

get a level deeper into the image. For example, three passes will end up with the scene

displaying level three and everything in front of that layer, which would normally beat it

in a standard depth test, will be ignored.

This technique is made possible by the use of multiple depth tests on a single pass. On

Daniel Rhodes 42

Figure 21: Depth Peeling [49]

Level 1Level 0

Level 2 Level 3

Chapter 3: Depth of Field

the first pass z-buffering occurs effectively as normal, however on subsequent passes

the winning pixel contributions from the previous pass are used to discard anything

from a previous layer by performing the exact inverse of a standard depth test and

setting the comparison value in such a way as to remove the previous winning layer.

Once previous layers have been discarded by the first test the second test takes over and

performs z-buffering as normal.

Within modern graphics API's the programmer generally has three depth testing options

z-buffer, w-buffer and no depth testing. Standard depth testing is performed once per

frame and is largely managed by the API. The Depth of field problem requires a z-buffer

solution which can perform multiple z tests per frame. This is not in-line with the

standard single pass approach to z-buffering but instead requires multiple passes to

separate each layer.

While there are various settings that can be changed within each API's depth testing

configurations (for example to set a z-bias), there is no direct way to allow discarded z

values to be retained. This is required to build up the multiple layers in order to

approximate the function of the A-buffer.

One possibility explored to enable this layer separation to take place is to attempt to

format the output z values in such a way as to allow them to be stored in the alpha

channel. This however throws up several issues, firstly the problem of getting the Z

values into an appropriate format, secondly the fact that alpha values only have an 8-bit

Daniel Rhodes 43

Chapter 3: Depth of Field

accuracy and finally there is the problem of how to get the values from the alpha

channel back into the z-buffer as comparison values for the next pass.

The proposed solution to use “Depth Peeling”, means that each pass across the scene

allows the technique to get a level deeper into the image. The levels can be thought of as

levels of depth; level 0 being the standard z-buffer test. Level 1 is the result that the

same standard z-buffer would provide if level 0 were not part of the image. Level 2 is

the result that the z-buffer would provide if level 0 and level 1 were not part of the

image and so on. As an example: three passes will result in an image three levels down

within the scene, and everything in front of that layer, which would normally defeat it in

a standard depth test, will be ignored. Examples of this can be seen in Figure 21 and

Figure 22. In the case of Figure 22 the darkest sections represent the winning

contributions for each layer.

This is made possible by the use of multiple depth tests on a single pass. On the first

pass z-buffering occurs as normal. However, on subsequent passes the winning pixel

Daniel Rhodes 44

22: Depth Peeling [49]

Chapter 3: Depth of Field

contributions from the previous pass are used to discard anything from a previous layer.

This is achieved by performing the exact inverse of a standard depth test and setting the

comparison value in such a way as to remove the previous winning layer. Once previous

layers have been discarded by the first test, the second test takes over and performs z-

buffering as normal.

This extra depth test is made possible by exploiting the shadow mapping facilities

provided by the NVIDIA 6 series graphics cards. This works because shadow mapping

is a form of depth testing; there are in fact very few differences between a standard

depth test and shadow mapping. The first difference is that shadow mapping sets colour

values rather than discarding pixels. However, this can be worked around by setting the

results of the shadow mapping to the alpha channel. The alpha test can then be used to

actually discard the relevant pixels. The second difference is that, unlike z-buffering the

shadow mapping test is not tied to the camera position. Therefore, it must be explicitly

set to the camera position to allow it to be used as a depth test

Any z information can be discarded at this stage. However, information on pixel

Daniel Rhodes 45

Figure 23: Occupancy and occlusion

In focus high resolution
pixel in front of a lower
resolution pixel

In focus high resolution
pixel behind a lower
resolution pixel

Out of focus low resolution
pixel

In focus high resolution
pixel

Chapter 3: Depth of Field

occupancy (alpha) is now required. This is because the original high resolution pixels

will only partially cover the lower resolution pixels generated in the b-buffers. Figure 23

shows an example of this and similar occlusion problems.

The final stage is to recombine the images into the final image. The amount of

processing required for this stage can be greatly reduced by using a hierarchical method

such as a Gaussian pyramid. By splatting18 each layer onto the layer directly above

rather than attempting to splat the lowest resolution directly to the highest resolution a

lot of processing can be saved. The b-buffers are taken from front to back, for each A-

buffer layer in turn, and accumulated to form a final image. The weighting of each pixel

contribution added to the final image is decided by the occupancy (or alpha) of that

pixel. Contributions from the size-reduced levels are splatted and their footprints are

used in the accumulation calculations.

With each b-buffer in this set having been reduced to the appropriate size they must now

be read and the contents rendered to the scene. Each pixel in the rendered scene is the

accumulated value of corresponding pixels from the complete set of a-buffers.

It is intended that the general filtering and accumulation techniques in the hardware

version will remain as close to ideal as circumstances allow, although this may not

always be possible due to hardware restrictions. Therefore, as mentioned, a Gaussian

reconstruction filter will be employed, and the convolution will be applied to a 2 x 2 set

18 See [50], p389 for more detail on splatting

Daniel Rhodes 46

Chapter 3: Depth of Field

of pixel samples from each b-buffer set for each displayed pixel, as shown in Figure 24.

The b-buffer levels will be accumulated from front to back for each a-buffer layer (i.e.

near to far from first layer, then near to far from second layer, etc.), for each pixel with

some available occupancy remaining.

The Gaussian filter is defined by: e−x
2 y2  .

The filter values may be calculated at run time. However, as the filter function should

not be required to vary on a per pixel basis; gains can be made by pre-calculating the

values.

The four texels19 of each image layer nearest to the screen pixel they represent must be

19 Texture map pixels.

Daniel Rhodes 47

Figure 24: Example sample points

Chapter 3: Depth of Field

accessed, then each is multiplied by the corresponding filter value and their sum taken

per level. These sums will then be accumulated until either the occupancy reaches its

maximum, or there are no more levels (i.e. the image is complete).

As the currently available test hardware may only access up to 16 texture maps in a

single pass, it becomes clear that the hardware implementation shall be required to use

one pass for each a-buffer layer. With 14 b-buffer levels in each a-buffer layer, along

with one pre-calculated filter and one result from the previous layer, all 16 texture units

will be required for each individual stage in the accumulation process.

An occupancy limit of 0.0-1.0 is set on the incoming pixel data from the b-buffers to

ensure it is only added into the frame while meaningful occupancy data is available. An

occupancy of 1.0 describes a fully opaque pixel, and 0.0 describes a fully transparent

pixel.

Once all levels of each A-buffer layer have been added into the final image, located in

the frame buffer, the image can be rasterised to the display and the processing of the

next frame may begin.

The advantages of this method is that the different resolutions can be easily obtained by

splatting the pixels to a lower resolution this also enables a higher level of blurring to be

obtained with relatively little processing required. Extra b-buffers cost little extra time

and memory so a higher level of blur can be obtained comparatively cheaply. The

Daniel Rhodes 48

Chapter 3: Depth of Field

hardware process is summarised in Figure 25.

Daniel Rhodes 49

Figure 25: Depth of Field simulation hardware process

● Input standard scene data, including required texturing and lighting

details.

● Perform Z-Buffering along with:

● Multi-pass depth peeling to get A-buffer layers.

● Retention of extra information in A-Buffer layer pixel data,

as described in section 3.3, i.e. multiple contributions from

each pixel.

● Perform culls to remove unnecessary data about pixels behind the focus

plane.

● Blur A-Buffer levels dependant on distance from plane of focus, this is

done by drawing the image data to different sizes in the b-buffers

utilising a Gaussian filter, as described in section 3.3.

● Recombine the layers by splatting, front to back taking into account

occupancy for weighting of each pixel:

● The B-buffer levels are accumulated front to back for each

A-buffer layer (i.e. near to far from first layer, then near to

far from second layer, etc.), for each pixel with some

available occupancy remaining.

● Display final recombined image.

Chapter 3: Depth of Field

3.4 3.4 ResultsResults

n this section both hardware and software versions of the depth of field algorithm

are examined. Success is determined by a number of factors, including: real-time

performance, visual quality and compatibility with current hardware.

I

3.4.1 3.4.1 SoftwareSoftware

s a proof of concept, the first stage of development requires the production of a

software version of the depth of field algorithm, which runs under a modern

graphics API to prove compatibility with current API's and to allow an easier transition

to hardware at a later stage.

A

The basic operation of the software version is as follows:

1. The first task is to set up the film plane along with any variables that require

initialising and clear all the buffers ready for processing.

2. Next, a sharp image is drawn, this is simply a standard process to produce a

pinhole camera model image. This sharp image can then be fed into the later

stages for processing and eventually output as a depth of field image.

3. The processing of the A and b buffers requires that the A-buffer retains a list of

pixel contributions, to be blurred dependant on depth, and that the b-buffers

contain the varying levels of blurred images required for this task.

Daniel Rhodes 50

Chapter 3: Depth of Field

4. The final step is to plot the pixels.

Figure 26 shows some sample visual outputs taken from the software version. The extra

level of realism provided by the see-through effect can be seen clearly in these images.

Unfortunately, the frame rate is extremely low, taking several minutes to generate a

single frame. Too low for any practical use other than generating static or pre-rendered

images, for which ray-tracing provides superior image quality.

Daniel Rhodes 51

Figure 26: Software Depth of Field Tests

Chapter 3: Depth of Field

3.4.2 3.4.2 HardwareHardware

he next step is to attempt to investigate possible implementations of this

technique on modern consumer level graphics hardware. Each aspect of the

technique is looked at in turn, with the eventual aim of meshing each separate

component into a complete hardware-based depth of field simulation.

T

3.4.2.1 3.4.2.1 A-BuffersA-Buffers

epth peeling tests were set-up to show that the process did in fact split the

layers as anticipated. Figure 27 demonstrates the depth peeling process and

clearly shows that four distinct layers are apparent from the tests.

D

When considering the frame rate, with the addition of depth peeling, the tests lose

around 85% of the frames per second20 when compared to a simple texturing and

lighting example of the same scene. This equates to around 45FPS compared to around

300FPS with basic texturing and lighting (MIP Mapped [51] bilinear filtering [52] and

Gouraud shading [9]).

20 FPS

Daniel Rhodes 52

Chapter 3: Depth of Field

3.4.2.2 3.4.2.2 B-BuffersB-Buffers

isual comparisons of the test images from hardware and software versions of

the accumulator show slight variations, this is demonstrated by Figure 28.V
In Figure 28 some slight discrepancies in colour is observed between versions. This is

most likely due to a difference in the rounding of values between the hardware and the

software. As shown in section 2.3.1, the GPU supports much lower precision floating

point calculations than the 80-bit precision used internally within modern CPUs floating

Daniel Rhodes 53

Figure 27: Depth peeling tests

Chapter 3: Depth of Field

point units. This is accentuated by the fact that the software version takes advantage of

double precision floating point numbers rather than the basic floating point available in

the GPU, adding much greater precision over that possible in the hardware version even

without considering the issues discussed in section 2.3.1. When coupled with the

accumulation process for each A and B-buffer layer which will compound any error, this

means that the errors shown in 2.3.1 may be exaggerated many times over causing the

effect seen in Figure 28.

Although an encouragingly high frame rate is achieved for a single a-buffer layer, a

large drop off in throughput is recorded with the addition of extra layers. Some figures

for the frame rates are detailed in Table 1.

Daniel Rhodes 54

Figure 28: b-buffer tests
Software Hardware

Chapter 3: Depth of Field

A-buffer layers B-buffer layers FPS

6 30.0

1 10 30.0

14 20.0

6 20.0

2 10 15.0

14 12.0

6 15.0

3 10 10.0

14 8.57

6 12.0

4 10 7.50

14 6.67

Table 1: b-buffer performance

3.5 3.5 ConclusionsConclusions

ith the aim of implementing a version of the depth of field algorithm, which

supports the see-through effect, and investigating the utilisation of modern

hardware in an attempt to get it to operate in real-time it can only be concluded that

there has been limited success. While each individual component of the system meets

the 30fps performance criteria set, a combination of them to create the full depth of field

solution is not currently possible while maintaining real-time performance.

W

With the software version the screenshots show that a convincing effect is created by

use of this method. While the frame rate is extremely low, it does prove that the

algorithm provides a plausible effect and hence that a full hardware implementation

could be beneficial in providing greater realism to games and simulations in the future.

Daniel Rhodes 55

Chapter 3: Depth of Field

The scope for future work in the field is quite large, as much is currently not possible in

real time on existing hardware. Future hardware developments will undoubtedly lead to

a solution similar to the one proposed being possible in real time.

This evaluation is appropriate for the GeForce 6 generation of GPUs on which it was

examined. Therefore, as with all things reliant on rapidly advancing technology it is

subject to change as hardware progresses. The current situation is that the GeForce 8

series and similar GPUs are becoming commonplace, while the GeForce 9 series is

approaching release. This makes the next few years, as the new generations of GPUs are

released, an ideal time for re-evaluation of this technique.

This is particularly true now. Since the completion of this work Depth of Field has

become an extremely popular area of research. Papers such as: Practical post-process

Depth of Field [53], Interactive Simulation of the Human Eye Depth of Field and Its

Corrections by Spectacle Lenses [54] and Depth-of-Field Rendering by Pyramidal

Image Processing [55] all propose real-time solutions to the various issues covered in

section 3.2. However, none of these solve all the problems with Depth of Field

simulation and all have significant limitations.

Practical post-process Depth of Field [53] takes a standard single layer approach to

rendering and completely ignores transparency. Therefore, it cannot support the see

through effect. Although the technique presented does allow colour to bleed through

from the background in areas where the foreground is blurred. This causes

Daniel Rhodes 56

Chapter 3: Depth of Field

discolouration of the blurred area, as opposed to a see through effect, and is noted as a

shortcoming of the technique rather than a feature. The technique also cuts off the

blurring in certain regions and at higher levels of blur for “artistic” [53] purposes. In this

case, aesthetic considerations caused the need for the author to artificially limit blur

levels in order to hide the shortcomings of technique. This is because the technique

blurs the “screen” [53] rather than individual objects, thus limiting the level of blur

which can be achieved before the effect “breaks down” [53].

Interactive Simulation of the Human Eye Depth of Field and Its Corrections by

Spectacle Lenses [54] approaches the problem from the specialist perspective of

spectacle lens simulation. It is for this reason that the technique is impractical for the

types games and simulations which are discussed at the start of Chapter 3. The

technique uses a specialist coordinate system, requires very low polygon models by

today's standards21 and represents blur levels in terms of precomputed voxels. This

means that the technique requires prior knowledge of the scene which is simply not

practical in most modern interactive games and simulations, and requires prohibitively

low polygon counts in order to achieve real time performance.

Depth-of-Field Rendering by Pyramidal Image Processing [55] uses an approximated

Gaussian filter for blurring, this causes over blurring which is severe in some cases. The

technique also only provides real-time performance for small image sizes and small

circles of confusion in static scenes.

21 Kakimoto et al talk in terms of thousands of polygons for the whole scene to achieve real-time
performance. Whereas, today's games often use tens of thousands, or even millions of polygons, for
single objects.

Daniel Rhodes 57

Chapter 4: Texture Mapping and Aliasing

Chapter 4: Chapter 4: TextureTexture
Mapping and AliasingMapping and Aliasing
raditionally, in its simplest form, texture mapping is performed by taking an

image, or texture, and applying it to an object, or objects, in a scene. This is done

to add detail, surface texture and/or colour. The process can be thought of as being

similar to wallpapering an object or wrapping a gift with paper. However, as computer

graphics tend to be displayed on two dimensional screens, and hence only simulate

three dimensions, there is often the added complexity of requiring perspective

corrections22 to give a more realistic appearance to the textured scene.

T

Hence texture mapping in computer graphics is performed by mapping the texture space

22 An example of perspective correct texture mapping can be seen in Figure 30

Daniel Rhodes 58

Figure 29: Transforming a pixel into texture space

Chapter 4: Texture Mapping and Aliasing

co-ordinates u ,v  onto the object in question, which has x , y , z  co-ordinates. This

is done to obtain texture space co-ordinates, which are then used to sample the texture.

The results are then applied to the pixel in image space to create the desired textured

effect on the object as illustrated by Figure 29.

As can be demonstrated by viewing the texture mapping example in Figure 29 a) the

process is quite simple and begins by specifying texture co-ordinates for each corner of

the triangle. Traditionally this would be a polygon, however modern graphics hardware

will render the scene almost exclusively as a combination of triangles, as seen in Figure

29 a). This is because triangles are the simplest complete shape with which other

polygons can be built, with the exception of point-based rendering systems [56], which

provide extremely poor performance by comparison.

Triangles also have the advantage of providing a constant scan-line delta (slope

gradient), and consistent memory requirements. The consistent memory requirements

are due to the fact triangles consist of three sets of x , y , z  co-ordinates (i.e. always

three corners) plus whatever information is required in terms of texturing, lighting etc. It

Daniel Rhodes 59

Figure 30: Why perspective correct texturing is required [57]

Chapter 4: Texture Mapping and Aliasing

is because of these properties that triangles can provide the building blocks of any larger

polygon shape or mesh. Hence their popularity in modern computer graphics as these

benefits outweigh those of using a range of different polygons.

The main task involved in texture mapping is to calculate the texture co-ordinates at the

current pixel, this is in order to know which points to sample in texture space. The

simplest way to do this is via a process known as affine texturing [58], which, while

being a simple process lacks perspective correction. Figure 30 [57], demonstrates the

shortcomings of affine texture mapping when the surface is angled away from the

viewer.

Affine texture mapping begins with the three triangle corners x0 , y0 , z 0 , u0 , v0 ,

x1 , y1 , z1 , u1 , v1 and x2 , y2 , z2 , u2 , v2 . u and v are then interpolated across the

Daniel Rhodes 60

Figure 31: Interpolating texture co-ordinates across a polygon

Chapter 4: Texture Mapping and Aliasing

triangle. As previously mentioned, using triangles, the scan-line delta23 is constant. This

makes the process much quicker, as extra slope calculations are not required. The

texture co-ordinates are interpolated across the scan-line, as shown in Figure 31, thus

providing the texture co-ordinates at the desired pixel. This is used as an index to

sample the texture, the result is then applied to the pixel.

Mathematically the process is as follows:

u=1−u0u1 and v=1−v0v1

where:

0  1

u , v = Interpolated texture co-ordinates.

u0 , v0 = texture co-ordinates at start point.

u1 , v1 = texture co-ordinates at end point.

This technique is extremely simple but suffers with issues associated with a lack of

perspective correction as illustrated by Figure 30. Most modern texture mapping

techniques are based on a method described by Chris Hecker [59]. Hecker's technique

involves dividing throughout by z . Therefore with Hecker style perspective corrected

texture mapping instead of interpolating u and v , u / z , v / z and 1/ z 24 are

interpolated in the same manner as u and v previously were, down the triangles edge

then across the scan-lines. This gives the interpolated values of u / z and v / z , these are

23 Gradient.
24 Z (depth) values are required to enable the perspective correction demonstrated in Figure 30.

Daniel Rhodes 61

Chapter 4: Texture Mapping and Aliasing

then divided by the 1/ z values, which results in an interpolated and perspective

corrected u and v . The perspective corrected values are then used as an index to

sample the texture. Thus:

u=
1−

u0

z0


u1

z1

1− 1
z0

 1
z1

 and v=
1−

v0

z0


v1

z1

1− 1
z0

 1
z1

where:

z0 = z value at start point.

z1 = z value at end point.

There are numerous other methods that can be employed to do this, which often depend

on the particular hardware or the filtering methods utilised in conjunction with texture

mapping. LaMothe 2003 [60] provides a more in-depth discussion of perspective

corrected texture mapping. One of the simplest methods, as seen in Figure 29 for

demonstration purposes, is to assume the pixel is square and projects into texture space

as a trapezium. Once the texture space pixel footprint, and therefore the texture co-

ordinates at the pixel, are known; texture samples can be taken which are applied to the

pixel's location in screen space. This process is repeated for each pixel of each triangle

in the scene producing the final textured polygons.

More recently texturing has often been combined with other techniques such as MIP

Daniel Rhodes 62

Chapter 4: Texture Mapping and Aliasing

mapping, bilinear filtering [52] and anisotropic filtering25 to help reduce artefacts and

aliasing. However all these techniques have one common limiting factor: the original

image on which the texture is based. The problem with this approach is similar to the

problems faced in signal processing, where the sampling rate of the signal, or in this

case the image, is too low; causing aliasing. Most of the currently available techniques

attempt to compensate for this effect by post-processing the image, treating the

symptom and not the cause.

4.1 4.1 The Aliasing ProblemThe Aliasing Problem

liasing is an effect that causes different continuous signals to become

indistinguishable, or aliases of one another, when sampled. In the signal

processing domain, this means that the source signal has not been sampled at a rate high

enough to fully reproduce the continuous signal of the original. Therefore it can be said

that: aliasing is caused by inappropriate or insufficient discrete samples of continuous

data. The average computer monitor and graphics card combination are simply not

capable of producing a sufficiently high sample rate, or resolution, to accurately

represent many forms of input. So in effect aliasing in image processing and 3D

computer graphics is caused by under-sampling of the source image.

A

Therefore it can be said that the intrinsic way in which monitors and graphics cards

work causes aliasing. This is because computer monitors, televisions and similar display

devices output pixels. Pixels are often easiest to think of, conceptually, as small squares

25 See section 4.2.6

Daniel Rhodes 63

Chapter 4: Texture Mapping and Aliasing

of colour, although they are in-fact points with a Gaussian like fall off, that represent

discrete samples of continuous data. Figure 32 provides an example of a Gaussian and a

square function for illustration purposes.

When considering the case of a standard 17” LCD computer monitor, the native

resolution will be fixed. LCD monitor resolutions of 1280x1024 are common place in

today's market. This equates to approximately 1.3 million pixels on screen, with each

pixel being capable of displaying upwards of 65,000 colours26. This may appear to be a

large number of pixels, however when compared against the average professional print

resolution of 300 dpi (dots per inch), or 90,000 dots in each square inch, it can be seen

that monitors have a fairly low sample rate by comparison.

An example of the possible output of a monitor is compared to an example of a source

image in Figure 33, where each square in the example represents a pixel on screen.

Because pixels can only display a single colour at a time in the example output they

26 This equates to 16-bit colour, which is quite low by today's standards.

Daniel Rhodes 64

Figure 32: Possible Pixel representations [48]

b) Point with Gaussian fall offa) Square pixel

Chapter 4: Texture Mapping and Aliasing

would have to be either black or white in order to represent the example image. This is

problematic, as some of the pixels are naturally sliced by the edge of the object.

Therefore, a decision must be made about how to deal with pixels that are not 100%

covered by the original image.

Usually, the decision on how to deal with these pixels is a simple one, based on whether

or not over 50% of the pixel is covered. If more than 50% of the pixel is covered then

the pixel is coloured, otherwise it is not. This means the line will not be straight as

intended, but will instead suffer from non uniform edges as seen in Figure 33. While

this example deals with edge aliasing the same principals can also apply to texture

aliasing.

4.1.1 4.1.1 Types of AliasingTypes of Aliasing

here are two main types of aliasing that affect 3D computer graphics, edge

aliasing27 and texture aliasing28. Existing solutions for each of these are T
27 See section 4.1 and Figure 33
28 See section 4.1.1.2

Daniel Rhodes 65

Figure 33: Original source image Vs On-screen representation

Chapter 4: Texture Mapping and Aliasing

examined and analysed.

4.1.1.1 4.1.1.1 Edge AliasingEdge Aliasing

he problem of edge aliasing can be lessened relatively simply via techniques

such as supersampling or multisampling. These types of techniques are often

known by the umbrella term of FSAA29, both involve taking multiple samples per pixel

and averaging the results to provide smoother, less jagged, edges.

T

4.1.1.1.1 4.1.1.1.1 SupersamplingSupersampling

onceptually supersampling [61][62] is simpler than multisampling, but

unfortunately it suffers from significantly lower performance.C
The basic principal of supersampling involves initially rendering the scene to a

resolution much larger than the display is capable of outputting. Multiple samples are

then taken for each pixel in the display resolution and then the result is averaged to

provide the final colour of each pixel as shown by Figure 34 a).

When using 4x super-sampling on an output device with a resolution of 800x600, you

would initially draw the scene to a resolution of 1600x1200 before averaging 4 pixels

from the larger image into one pixel of the final 800x600 image. From this example it is

simple to deduce that super-sampling quickly becomes unrealistic in real time, unless

29 Full Scene Anti-Aliasing.

Daniel Rhodes 66

Chapter 4: Texture Mapping and Aliasing

running directly on optimised hardware. This is because the total number of samples

increases rapidly for each extra level of supersampling. Low levels of super-sampling

such as 4x times supersampling require 4 times the work of regular rendering, hence the

name. Even at that level supersampling can soon become unmanageable in complex

scenes where other techniques such as normal mapping and HDR30 lighting are in

operation.

Another advantage of supersampling is that it can improve texture aliasing and image

quality as well as the obvious affect is has on edge aliasing. This is due to the extra

samples reducing texture aliasing in the same manner to how the extra samples reduce

edge aliasing. Therefore, as supersampling does not distinguish between different

aspects of a scene the whole scene benefits from the extra samples.

4.1.1.1.2 4.1.1.1.2 MultisamplingMultisampling

ultisampling is slightly more complex than supersampling, but at the same

time it is a much more efficient version of supersampling. Multisampling

does not draw the whole scene at a higher resolution but instead uses sub-pixel samples,

or virtual pixels to approximate supersampling.

M

These virtual pixels correspond to the sample points as shown in Figure 34 b), this

achieves a similar effect to supersampling (Figure 34 a)), but at a lower cost. This is

because of the use of sub-pixel samples. Texture fetches are kept to a minimum, as the

30 High Dynamic Range.

Daniel Rhodes 67

Chapter 4: Texture Mapping and Aliasing

results of a texture fetch are shared between all the sub-pixels of the main pixel instead

of the one texture fetch per sample approach used in supersampling. This means that,

where supersampling has a 1 to 1 relationship between texture fetches and samples

taken from the higher resolution, multisampling has a 4 to 1 relationship. With every

four sub-pixel samples sharing the results of one texture fetch. The main performance

difference between supersampling and multisampling however, is that modern GPUs are

intelligent enough to only perform multisampling on edge pixels, thus drastically

improving rendering speeds. This negates the advantages to image quality and texture

aliasing provided internally across the textured object by supersampling and simply

provides improvements to the edges. Figure 34 shows an example of both methods,

where the yellow dots represent sample points. This clearly demonstrates the

fundamental differences between the two techniques, both are taking four samples per-

pixel however where supersampling samples four pixels, multisampling samples four

subsets of the same pixel.

Daniel Rhodes 68

Figure 34: FSAA Comparison

Chapter 4: Texture Mapping and Aliasing

Multisampling is essentially an optimisation of supersampling used by vendors such as

NVIDIA and ATI to increase the performance of their chips at the expense of image

quality. Supersampling does however provide the better results as far as image quality is

concerned and even improves texture quality in some cases within objects, and so it is

preferable to multisampling from a purely image quality perspective.

4.1.1.2 4.1.1.2 Texture AliasingTexture Aliasing

exture aliasing, as shown in Figure 36 a), is a particular problem for 3D

graphics. During rasterisation of a textured polygon, screen coordinates are

mapped into texture coordinates (u, v) and the texture is sampled using these

coordinates. If the polygon is shrunk due to perspective, it may cover only a few pixels

in screen space. This will result in only a few possible sampling points spread across the

original texture. If the texture contains a lot of fine detail, then the sampling points may

not be representative of the original texture. Figure 35 provides an example of these

problems for the case of an original 1024x1024 image sampled down to 512x512 as

would be done for standard MIP Mapping.

T

Daniel Rhodes 69

Chapter 4: Texture Mapping and Aliasing

Figure 35 b) is the result of performing a simple point sampling operation on Figure 35

a). The banding effects present in Figure 35 b) correspond to high-frequency

components of the original image, where large variations of colour are concentrated in

small areas (in this case black to white and white to black). Therefore, as already

demonstrated for edge aliasing, it can be said that sampling of an image that has high-

frequency components with a grid of a lower frequency results in aliasing artefacts, such

as those in Figure 35 b) and Figure 36 a).

Unlike edge aliasing, texture aliasing cannot be solved by common and easy to

implement full scene anti-aliasing techniques like multisampling. However, the most

computationally expensive full scene method; supersampling, does have some benefits

for texture aliasing. These are achieved by artificially increasing the sample rate over

the whole scene. Object visibility, object shape, perspective, shadowing and texture

Daniel Rhodes 70

Figure 35: Re-sampling of an image, resulting in aliasing
a) Original b) Sampled

Chapter 4: Texture Mapping and Aliasing

frequency variance all affect texture aliasing and add to the complexity of addressing

the problem.

Figure 36 provides an example of texture aliasing effects, as can be seen the under-

sampling in Figure 36 a) has caused severe aliasing which is visible even on a static

image. The sampling theorem (or Nyquist limit) [63][64] states that the sampling

frequency must be at least twice the maximum frequency of the source signal to avoid

aliasing. With computer graphics this is often an impossible task to achieve as monitor

resolutions are a limiting factor for sampling frequency. Therefore aliasing is to a large

extent inevitable and efforts much be made to minimise such effects.

In most real-time systems the approaches used to tackle texture aliasing tend to be

variations and extensions of MIP mapping [51], which is discussed in greater detail in

section 4.2.1. However, such approaches have a number of shortcomings. Most notably

such solutions are usually isotropic31, such as Bilinear [52] and Trilinear filtering [65].

31 Meaning they often only use square filtering patterns

Daniel Rhodes 71

Figure 36: Texture Aliasing
a) No anti-aliasing b) Anti-aliasing applied

Chapter 4: Texture Mapping and Aliasing

This is far from ideal as the problem really requires an anisotropic approach, or more

specifically a non-square filtering pattern, such as the approach taken by Cant and

Shrubsole [66].

Figure 37 provides some examples of pixels which have been transformed into texture

space. As can be seen the resultant patterns are often non-square. In addition, as in

Figure 37 b), the patterns can also be long and thin. That is a situation which could

cause MIP mapping to suppress the texture, in turn causing fading or blurring. As can be

seen from this, an anisotropic approach would seem ideal, however current attempts to

do so in real time, while superior to isotropic methods, for the most part still have

significant drawbacks.

Many of the best performing techniques are unsuitable for modern shader based

graphics hardware, and those that are compatible with modern hardware suffer other

Daniel Rhodes 72

Figure 37: Examples of pixels transformed into texture space

Chapter 4: Texture Mapping and Aliasing

shortcomings. With all this in mind much research and development has been

undertaken into methods which reduce aliasing. Many of the more popular and efficient

methods are discussed here, as well as some higher quality methods which are not

currently possible in real-time.

4.2 4.2 Existing SolutionsExisting Solutions

here are many current solutions to the texture aliasing problem. However, all

currently popular solutions contain compromises to allow real-time performance

and those techniques which provide better anti-aliasing properties suffer with

performance.

T

4.2.1 4.2.1 MIP MappingMIP Mapping

IP mapping was first introduced by Lance Williams in 1983 under the title

“Pyramidal parametrics” [51] and has become one of the most common

techniques in computer graphics today. MIP is an acronym of the Latin phrase “Multim

Im Parvo” which can be taken to mean “many things in a small space”.

M

Figure 38 shows some sample images taken from Tom's Hardware [67] which clearly

shows the benefits of MIP mapping over point sampled texturing. The MIP mapped

image shows a substantial reduction in artefacts, although at the expense of image

sharpness. It can be argued, at least with the more distant objects, that this case is closer

Daniel Rhodes 73

Chapter 4: Texture Mapping and Aliasing

to reality although perhaps not to the extent seen with MIP Mapping. What the image

does not show is the severe motion aliasing that is apparent in the non-MIP mapped

version, when the scene is in motion. Although, while artefacts are still apparent in the

MIP mapped version they will be far less severe.

Daniel Rhodes 74

Figure 38: Flat Texturing Vs MIP Mapping [67]

Figure 39: Example of a partial MIP map set

Chapter 4: Texture Mapping and Aliasing

As illustrated by Figure 39, MIP mapping consists of a set of images each of which

represents the original image at increasingly reduced levels of detail. Given an original

image of 64x64 the MIP map sets would be 32x32, 16x16, 8x8, 4x4, 2x2, 1x1. This

enables different MIP map levels to be chosen dependant on the level of detail required.

This has the effect of reducing rendering time, because there is less processing to be

done on the smaller sets compared to a full size texture. MIP maps also significantly

decrease artefacts because the MIP map sets are already partially anti-aliased by the

scaling process needed to create them.

Scaling of MIP maps is done by a process of filtering and decimation whereby each

MIP map level is derived from the one directly above it, working from the highest

resolution of the original image to the lowest resolution of the 1x1 MIP map. This

process eliminates a great deal of aliasing. However, because most MIP mapping

techniques include frequencies up to the Nyquist limit [63][64] for their resolution,

other forms of aliasing are introduced, which creates the need for bilinear filtering. A

similar problem also occurs with transitions between MIP map levels, which is where

trilinear filtering [65] is useful.

In its simplest form MIP mapping picks the appropriate MIP map level based solely on

which of the levels is nearest to the required number of pixels. For example, if a

textured object in a scene required a texture of 50x50 then the 64x64 MIP map would be

chosen, this is known as nearest neighbour MIP mapping. This does however cause a

problem as illustrated by Figure 38, which shows the boundaries of each level of detail

Daniel Rhodes 75

Chapter 4: Texture Mapping and Aliasing

becoming visible when MIP mapping is enabled. This is caused by the sharp cut off

between levels which occurs with nearest neighbour MIP mapping. As such MIP

mapping is much more effective when combined with more sophisticated algorithms for

handling level selection, such as trilinear filtering. Trilinear filtering gives a weighted

average to MIP maps between levels, taking into account the results from both adjacent

MIP maps and smoothing the transition between levels.

There is an increased storage size required for MIP mapping which, assuming texture

compression is not used, equates to approximately 1.33 times the original texture size.

While this is not a problem for modern consumer level hardware which tend to be

designed around MIP maps, this is not an ideal situation in terms of traditional memory

management techniques.

Advantages Disadvantages

Speeds up rendering compared to flat
texturing

Increased memory requirements

Decreases artefacts Does not remove all aliasing

Can over blur image causing loss of detail

Can under sample the image causing
aliasing

Requires some pre-processing

Table 2: MIP mapping: advantages and disadvantages

Daniel Rhodes 76

Chapter 4: Texture Mapping and Aliasing

4.2.2 4.2.2 Bilinear FilteringBilinear Filtering

ilinear filtering [52] or bilinear interpolation is one of the simplest techniques

commonly used to improve basic MIP mapping. Bilinear filtering can be used

on its own with full detail textures, or as a magnification filter in conjunction with MIP

mapping. Calculation of a pixel value is achieved by linearly interpolating the four texel

values nearest to the point the pixel represents. This requires linear interpolations in the

x and y directions (hence its name) which must then be combined to give the final pixel

value.

B

Mathematically the bilinear filtering pixel value calculations can be expressed as

follows:

c top=t 00⋅1−w x t10⋅w x

cbottom=t 01⋅1−w x t 11⋅wx

c=ctop⋅1−w ycbottom⋅w y

where:

t 00 = Top left texel.

t 10 = Top right texel.

t 01 = Bottom left texel.

t 11 = Bottom right texel.

w x = Weight in x direction.

w y = Weight in y direction.

c top = Linearly interpolated value for top texels.

Daniel Rhodes 77

Chapter 4: Texture Mapping and Aliasing

cbottom = Linearly interpolated value for bottom texels.

c = Final pixel value.

This derivation implies that bilinear filtering requires four texture fetches per pixel. This

makes bilinear filtering theoretically more than 4 times slower than basic nearest

neighbour texturing, even before taking into account the three linear interpolations

required.

Figure 40 gives an example of bilinear filtering with MIP mapping alongside basic MIP

mapping. This clearly shows that bilinear filtering smooths out the image, resulting in a

less pixelated final scene. Bilinear filtering however does not solve the problem of

visible layer transitions shown in the earlier MIP mapping examples, as the abrupt

change in blurriness is unaffected by this method of filtering. Again referring to Figure

40 it can be seen that bilinear filtering smooths out the texture, this has the effect of

Daniel Rhodes 78

Figure 40: MIP mapping Vs Bilinear filtering with MIP mapping

Chapter 4: Texture Mapping and Aliasing

removing artefacts at the expense of some detail and sharpness.

Advantages Disadvantages

Removes a great deal of aliasing compared
to basic nearest neighbour texel selection

When used on a full detail texture scaled
to a small size can cause accuracy
problems and loss of detail

Can be used in conjunction with MIP
mapping

Can under sample the image causing
aliasing.

Does not remove all artefacts

Over blurs image

When used in conjunction with MIP
mapping clear distinctions between levels
of detail are visible, caused by abrupt
changes in blurriness. This can be
particularly noticeable at steep angles

Table 3: Bilinear filtering: advantages and disadvantages

4.2.3 4.2.3 Trilinear FilteringTrilinear Filtering

rilinear filtering [65] is an extension of bilinear filtering into three dimensions to

take into account adjacent levels of detail32. This implies that trilinear filtering

may be used only in conjunction with techniques like MIP mapping, which rely on level

of detail calculations. Bilinear filtering is performed for both levels, and the results are

linearly interpolated using the fractional part of the level of detail as a weighting factor

to produce the final trilinearly filtered pixel value. In other words, trilinear filtering

consists of two bilinearly filtered MIP map levels with a linear interpolation between

them, to smooth out the transition between the levels of detail.

T

32 Usually the two MIP map levels nearest to the current LoD, calculated from the Z depth values.

Daniel Rhodes 79

Chapter 4: Texture Mapping and Aliasing

Whilst it is an improvement over bilinear filtering, trilinear filtering still suffers from a

number of problems. Most notably trilinear filtering is much slower than bilinear

filtering, as it requires twice the number of texture fetches and more than twice the

amount of linear interpolations. This means trilinear filtering is at least twice as slow as

bilinear filtering.

Trilinear filtering also suffers from the same accuracy problems as bilinear due to the

assumption that the pixel occupies a square area on the texture, when in reality it is

closer to a trapezium or an ellipse. Consequently this can cause loss of detail in the case

where the texture is at a steep angle in relation to the viewpoint, such as that illustrated

by Figure 41, and the pixel footprint is narrow and long. This means that in the long

direction the pixel gets less detail than it should, as the square representation covers less

texels than a trapezium or ellipse would, and in the narrow direction the square pixel

gets information from more texels than it should.

Daniel Rhodes 80

Figure

41: Trilinear filtering with MIP mapping

Chapter 4: Texture Mapping and Aliasing

Figure 41 gives examples of trilinear filtering. This shows that trilinear filtering helps

greatly with the problem of the visible layer transitions, which constitutes one of the

main issues with MIP mapping and bilinear filtering. Figure 41 also demonstrates that

while, just as bilinear filtering does, trilinear filtering smoothes out the front face

removing much aliasing at the expense of some detail. It also smoothes out the other

faces, at the expense of detail and some over-blurring but with the benefit of fewer

artefacts. Some detail is lost on the steeper angles compared with pure MIP mapping

and bilinear filtering.

Advantages Disadvantages

Improves over bilinear filtering by making
the transitions between levels of detail
smoother

Assumes the pixel occupies a square area
on the texture. This can cause loss of
detail, particularly at steep angles

Over blurs image

Does not remove all artefacts

Table 4: Trilinear Filtering: advantages and disadvantages

4.2.4 4.2.4 “Brilinear” and “Trylinear” Filtering“Brilinear” and “Trylinear” Filtering

he techniques known as “Brilinear” and “Trylinear” filtering are two different

names for the what is effectively the same thing: heavily optimised trilinear

filtering. The effect these techniques give is a hybrid of bilinear and trilinear filtering,

sacrificing image quality in certain areas for the benefit of greater performance.

T

These techniques follow a growing trend in consumer level graphics hardware to

sacrifice final image quality for improved performance generation on generation. This

Daniel Rhodes 81

Chapter 4: Texture Mapping and Aliasing

continues despite large increases in capabilities between hardware generations. This is

because, within reason, frame rates in popular game X or benchmark test Y are used to

sell graphics cards not overall image quality.

Over the years there has been a great deal of contention between the two main GPU

firms, consumers, and the media over the use of such techniques. In the time of the

GeForceFX for example NVIDIA advertised with the claims "Cinematic Computing"

and "Engineered with passion for perfection" when in actuality the visual quality of the

GeForceFX was in many ways inferior to some of its predecessors.

Early GeForce lines such as the 256 used full super-sampling, whereas more recent

models like the FX utilise multi-sampling. Which is a more efficient but lower quality

process. Similarly, older GeForce lines utilised full trilinear filtering, whereas the FX

series did not allow full trilinear filtering. Instead the GeForce FX as well as successive

series uses “brilinear” filtering to improve performance.

This “optimisation” was undertaken in the hope of beating rivals in the benchmark tests

often found in hardware reviews, and hence selling more GPUs. This is not to say the

newer hardware was not at least as capable of trilinear at reasonable speeds than

previous models, just that NVIDIA's priority had shifted to speed over visual quality. A

similar story is true of ATI who, with the R420 line of graphics chips (the X800 series)

introduced facilities to automatically determine whether or not to use full trilinear or

optimised trilinear (“Trylinear”) based on the content of the source MIP maps. This

Daniel Rhodes 82

Chapter 4: Texture Mapping and Aliasing

trend has continued to the current generation of cards.

Essentially what both techniques do is to decide, based on angle, level of detail and

texture content, whether trilinear or bilinear filtering is more appropriate. Based on this,

a decision is made to only perform bilinear filtering in the regions where trilinear is not

deemed necessary. This results in sharper transitions between levels of detail but can

dramatically improve rendering speed.

Much of the reason for the switch to these hybrid methods is to do with the architecture

of modern graphics cards, whose texture units supply only one bilinear sample per clock

cycle. Thus in order to realise trilinear filtering either two texture units or two clocks are

required. Therefore, in theory, trilinear filtering halves the fill rate when compared

against bilinear filtering. So by minimising the use of trilinear filtering and maximising

the use of bilinear filtering these hybrids can theoretically save a lot of work for the

GPU.

An example taken from Tom's Hardware [67], which clearly illustrates the differences

between Bilinear, “Brilinear” and Trilinear, is shown in Figure 42. The transition

between levels is sharp and obvious in the case of Bilinear, “Brilinear” shows a rapid

but smoother transition and Trilinear shows a much more gradual transition between

levels. The increased size of the coloured areas when compared to trilinear filtering are

symptomatic of the “Brilinear” techniques optimisations, and these are the areas in

which only bilinear filtering is performed. This means that with “Brilinear”, much like

Daniel Rhodes 83

Chapter 4: Texture Mapping and Aliasing

Bilinear, it is easier to spot the level of detail transitions. This can become very

noticeable in something like a game or simulation, as one side effect of sharper level

transitions is the appearance of bow waves. These bow waves move as the view point

changes, making them very noticeable in non-static scenes.

Advantages Disadvantages

Gives significant theoretical performance
improvements over full trilinear filtering

Reduced visual quality compared to pure
trilinear filtering

Fewer artefacts than bilinear filtering for
little extra cost when judged against the
comparatively high costs of full trilinear
filtering

Often results in a reduced LOD selection
(s m a l l e r M I P m a p) t o i m p r o v e
performance further, at the expense of
greater levels of blurring

Increased visibility for level of detail
transitions over full trilinear filtering

Table 5: "Brilinear" / "Trylinear" filtering: advantages and disadvantages

Daniel Rhodes 84

Figure 42: Bilinear, “Brilinear” and Trilinear Filtering [67]

Chapter 4: Texture Mapping and Aliasing

4.2.5 4.2.5 RIP MappingRIP Mapping

IP mapping is a basic form of anisotropic filtering 33 which extends MIP

mapping to include anisotropically down-sampled images, which can be probed

similarly to basic MIP mapping.

R

RIP maps are essentially non-uniform MIP maps, meaning the extra factor of irregular

texture co-ordinates need to be taken into account to calculate the different RIP map

selections. Given a 128x128 original image, samples could be taken from many

different RIP maps including a 256x128, 128x128, 64x128 or 32x128 RIP map,

dependant on each texture axis. Because of this RIP mapping is restricted to axis aligned

anisotropic probes and a rectangular filtering pattern. RIP mapping also suffers from

much larger memory requirements than the equivalent MIP maps due the the extra maps

needed for the non power of two anisotropic maps. This is why RIP mapping remains

largely unused on consumer hardware, where texture memory and bandwidth are at a

premium and hardware is often optimised solely for power of two textures as commonly

found in MIP maps.

Advantages Disadvantages

Fast anisotropic filtering Only supports axis aligned anisotropy

Similar in principal and execution to the
widely adopted MIP mapping

Has massive memory requirements
compared to other techniques

Table 6: RIP Mapping: advantages and disadvantages

33 See section 4.2.6

Daniel Rhodes 85

Chapter 4: Texture Mapping and Aliasing

4.2.6 4.2.6 Anisotropic FilteringAnisotropic Filtering

echnically speaking there are many varieties of anisotropic filtering, such as RIP

Mapping, and EWA34 [68][69] etc. This is because anisotropic filtering simply

refers to any method where the filtering method probes the texture with a non square, or

anisotropic, filtering pattern. As illustrated by Figure 37 this can often be narrow and

long in texture space. This is to take into account the fact that a single screen pixel may

encompass data from multiple texels, often with a greater proportion being in one axis,

meaning anisotropic filters allow proper preservation of perspective. This enables

greater detail retention in the final screen image, particularly at sharper angles where the

problem is accentuated. However, for the purpose of this discussion it will be assumed

that anisotropic filtering refers to the variations implemented in current consumer level

hardware by NVIDIA and ATI, all other relevant anisotropic methods shall be discussed

individually under their respective full titles.

T

Very little is known publicly about the algorithms used on either ATI or NVIDIA's

hardware, as both are extremely secretive about the exact techniques and optimisations

they use. However Smith [48] offers a discussion of both companies anisotropic

techniques and provides enough information to allow, with some assumptions and

deduction, a degree of understanding of both approaches to anisotropic filtering.

The current maximum setting for anisotropic filtering on the main test hardware

(NVIDIA GeForce 6800) is 16x, this has remained constant on a number of recent

34 Elliptical Weighted Average, which is discussed in section 4.2.7.

Daniel Rhodes 86

Chapter 4: Texture Mapping and Aliasing

generations of NVIDIA cards35. This means that there are 16 anisotropic samples per

pixel, or 128 texture samples per pixel when used in conjunction with trilinear texture

filtering. Because trilinear filtering requires two times bilinear filtering, or 2 times 4

samples, giving 8 samples for trilinear, meaning a total of 8 texture samples per

anisotropic sample (also known as a tap).

However, both ATI and NVIDIA utilise adaptive anisotropic filtering, meaning that the

filtering is applied to varying degrees on different sections of the scene. This is

dependant on selections made by their algorithms. This makes it difficult for an outside

observer to accurately calculate the potential performance of such an algorithm,

although approximations are possible via experimentation. It is also difficult to use the

number of samples as a comparison against other techniques, as the total number of

samples is dependant on both scene and viewing angle. It can however be reliably said

that both implementations, at a setting of 16x, will have a maximum of 128 texture

samples per pixel.

As previously mentioned, ATI and NVIDIA both vary the use of anisotropic filtering

dependant on the angle of the surface relative to the eye position. This means they use a

longer sample area on sharper angles resulting in more samples. However, both

companies take different approaches to sample footprint. ATI sample a rectangular area,

while NVIDIA on the other hand sample a variable polygonal area. The NVIDIA

sample footprint changes shape dependent on the degree of slope related distortion on

35 Although greater levels are possible with Sli (multiple cards running in parallel) or NVIDIA's
workstation level Quadro cards.

Daniel Rhodes 87

Chapter 4: Texture Mapping and Aliasing

the x and y axes. This means the NVIDIA method can dynamically vary the number of

samples as well as the samples footprint shape and aspect ratio, whereas the ATI

hardware can only vary the number of samples and the aspect ratio of the sample area.

NVIDIA also utilise a non-linear weighting factor, taking more samples closer to the

eye and fewer as the viewing distance increases. This is to improve performance by

sacrificing image quality where the differences are less noticeable. This means that the

NVIDIA implementation could theoretically provide better performance and/or better

image quality dependant on the optimisation settings employed. Thus NVIDIA's

technique allows greater flexibility to tailor the filtering to suit the needs of the

application.

Neither ATI nor NVIDIA's anisotropic techniques are true implementations of

anisotropic filtering, as both use optimisations to increase performance at the expense of

visual quality. This almost certainly results in less detail being retained by the final

image and will allow aliasing where there would be none in a more complete

anisotropic solution.

Figure 43 gives examples, taken from Tom's Hardware [67], of a variety of different

filtering techniques which are common on today's consumer level graphics hardware.

The advantages of anisotropic filtering are plain to see from the example. Unfortunately

there is a significant performance cost involved, even with the heavy optimisations used

by NVIDIA and ATI.

Daniel Rhodes 88

Chapter 4: Texture Mapping and Aliasing

What is not clear from the images in Figure 43 is that aliasing still occurs, even at 16x

anisotropic filtering, when the scene is in motion. It is worth noting that even without

the optimisations this would still be the case unless many more samples are taken. This

is due to the inaccurate representation of a pixel as a rectangle or four sided polygon at

the sampling stage.

Daniel Rhodes 89

Figure 43: The Anisotropic Advantage [67]

Chapter 4: Texture Mapping and Aliasing

Advantages Disadvantages

The techniques fit in well on current
consumer level hardware and can be used
in conjunction with either bilinear or
trilinear filtering to improve the final
image. Although trilinear should be the
preferred choice to minimise artefacts and
aliasing

Full implementation details are not known
and so the most used methods on
consumer hardware are difficult to
compare l ike for l ike with other
techniques, for example slight differences
in texel size and orientation calculations
could make massive differences to the
final image

Optimisations provide better performance
than using the full range of samples for
every pixel

Optimisations make it difficult to properly
compare performance against other
techniques

Optimisations have a negative impact on
aliasing and image detail

Neither implementations representation of
a pixel as a rectangle or four sided
polygon are strictly accurate

Table 7: Anisotropic filtering: advantages and disadvantages

4.2.7 4.2.7 Elliptical Weighted AverageElliptical Weighted Average

lliptical Weighted Average or EWA [68][69] was first proposed by Heckbert and

Greene in 1986. It is a method of anisotropic texture filtering whose central

premise is that pixels are not square but circular, or more precisely they are points with

a fall off similar to the Gaussian function illustrated in Figure 32 b) on page 64.

Therefore this leads to the conclusion that the pixel footprint in texture space is not

rectangular or polygonal, as in ATI and NVIDIA's anisotropic filtering techniques, but is

in-fact an ellipse. The EWA ellipse is formulated as:

E

d 2u , v =Au2BuvCv2

Daniel Rhodes 90

Chapter 4: Texture Mapping and Aliasing

Where the biquadric co-efficient's for computing d 2 are:

Ann= dv
dx 

2

 dv
dy 

2

Bnn=−2× du
dx

× dv
dx

 du
dy

×dv
dy 

Cnn= du
dx 

2

 du
dy 

2

and

F=Ann×C nn−
Bnn

2

4

A=
Ann

F

B=
Bnn

F

C=
Cnn

F

[68][69][70][71][72]

The value of d 2 represents the distance from the centre of the pixel squared, when the

texel position is mapped back to screen space [70][71]. This means d 2 may be used as

an index to a table of Gaussian weights, unrelated to the affine projection but dependant

on the pixel filter.

EWA calculates d 2 for every texel in or near the elliptical footprint, where texels with a

value of d 21 are considered to be within the pixel footprint. Hence they are sampled,

weighted, and accumulated, while those with a value of d 21 are discarded. The result

is then divided by the sum of the weights which gives the elliptical filters volume in

texture space.

Daniel Rhodes 91

Chapter 4: Texture Mapping and Aliasing

McCormick et al [70] describe EWA as “the best software anisotropic texture filtering

algorithm known to date”, “the most efficient direct convolution method known for

computing a textured pixel” and say that the technique “provides a quality benchmark

against which to compare other techniques”. Shin et al [71] say that EWA “generates the

very high quality images, but requires the intensive computation power and texel

values. This method provides a quality benchmark used when to compare various

filtering techniques”. Therefore it can be concluded that EWA may be used as a quality

benchmark for comparison with other techniques, and can be held up as an exemplar of

quality for anisotropic techniques.

EWA has two main drawbacks: firstly it could be argued that EWA's visual quality could

be sharper than its Gaussian filter allows. It is argued that other filters are able to

produce sharper images without introducing significantly more aliasing artefacts [73].

However, as pointed out by Lansdale [74] and McCormick et al [70] none of these

filters are as easily handled, mathematically, as the Gaussian for unifying the

reconstruction filter and projected pixel filter. EWA's second major drawback is the

sheer number of operations it requires, which to date have precluded a real-time

hardware implementation.

Advantages Disadvantages

Widely regarded as the pinnacle of
anisotropic techniques for visual quality

Currently impractical for real-time use due
to the large number of operations required
to implement

Images could be shaper than the Gaussian
filter allows

Table 8: EWA: advantages and disadvantages

Daniel Rhodes 92

Chapter 4: Texture Mapping and Aliasing

4.2.8 4.2.8 TexramTexram

exram is a variety of footprint assembly which achieves high performance via a

logic-embedded, highly-integrated, dynamic memory device [75]. Providing a

higher visual quality than trilinear texture filtering but without the computational

expense of methods like EWA. As Texram requires specialist hardware that does not fit

in with the current standard graphics pipeline it does not make an appropriate

comparison to many of the other techniques discussed, however it deserves a special

mention due to the technique's influence on Feline36.

T

McCormack et al [70] state that Texram uses a series of trilinear filter probes along a

line, which approximates the length and slope of the major axis of EWA's elliptical

footprint. It was considered too costly to implement the computation of the full ellipse

parameters in hardware, so simplified approximations were proposed. The

approximations actually underestimate the length of the ellipses major axis which

introduces blurring, they also deviate slightly from the slope of the major axis, again

causing blurring along with some aliasing. These errors are particularly evident when

Texram is used in conjunction with environment mapping, but are however “visually

insignificant under typical perspective projections” [70].

36 Discussed in section 4.2.9.

Daniel Rhodes 93

Chapter 4: Texture Mapping and Aliasing

Advantages Disadvantages

Provides comparable results to EWA under
typical perspective projections for
significantly lower computational cost

Requires specia l i s t hardware not
commonly found on consumer level
graphics cards

Approximations of the ellipses major axis
can introduce blurring and aliasing

Table 9: Texram: advantages and disadvantages

4.2.9 4.2.9 FelineFeline

eline is a hybrid method which attempts to bring together the best elements that

Texram and EWA have to offer. Feline stands for Fast Elliptical Lines and was

proposed by McCormack et al [70] in 1999. Unlike EWA, Feline is an isotropic

technique which utilises multiple isotropic probes to mimic the shape of the EWA filter.

Feline can also be simplified to use axes approximations, similar to those employed by

Texram, to further enhance performance.

F

McCormick et al [70] claim that Feline compares well against EWA which they term

“the best software anisotropic texture filtering algorithm known to date”. This is

because Feline provides similar levels of image quality to EWA with performance closer

to that of Texram. The main advantage that Feline holds over EWA is that it requires

significantly less set-up computation and fewer cycles for texel fetches. Feline improves

over Texram as it uses standard MIP-maps, therefore it does not require specialist

hardware and minimal extensions are required to standard 3D interfaces, such as

OpenGL, to implement it [70].

Daniel Rhodes 94

Chapter 4: Texture Mapping and Aliasing

Advantages Disadvantages

Achieves higher visual quality than
Texram with little additional logic

Has substantially higher computational set
up costs than Texram

Images generated by Feline filtering, are
much sharper and exhibit fewer Moire
artefacts than images which have been
developed using trilinear filtering

Requires more advanced filters, such as
Lanczos, to match the image quality of
EWA which impacts heavily on Feline's
cost

By using a better filter, such as Lanczos,
Feline is able to create mip-maps which
display fewer artefacts than EWA

The assoc ia ted se t up cos t s a re
substantially lower than mip-mapped
EWA

Table 10: Feline: advantages and disadvantages

4.2.10 4.2.10 ClampingClamping

lamping is a method proposed in 1982 by Norton, Rockwood & Skolmoski [76].

This technique is based on bandwidth limiting in object space, it selectively

suppresses frequencies using a power series approximation of a box filter.

C

Daniel Rhodes 95

Figure 44: “Parallelogram filter” in object space [76]

(x
0
, y

0
)

(x
0
 + x

2
, y

0
 + y

2
)

(x
0
 + x

1
, y

0
 + y

1
)

Chapter 4: Texture Mapping and Aliasing

A simple box filter is used to suppress high frequencies, Norton et al. note that because

of this the perspective transformation to object space becomes trivial. This perspective

transformation is logically approximated by a linear transformation, meaning that the

box filter translates to the parallelogram in object space as illustrated in Figure 44.

Taking Norton's mathematics verbatim, this means that the points within the

parallelogram can be parametrised by:

x0, y0s x1, y1 t x2, y2

where

−1s ,t1

and the sides of the parallelogram have length and direction which can be calculated by:

2⋅x1, y1 and 2⋅x 2, y2

The average value of I x , y  is calculated by:

1/4∫1
−1
∫1
−1

e ik  x0 sx1tx 2il y0sy 1ty2 dsdt

This allows the clamping function (C) to be defined by:

C={e
ikx0ily 0 1−r⋅kx1iy1

2−kx2iy2
2

if r⋅kx1ly1
2kx2ly2 

21
0 otherwise }

Which amounts to multiplying eikx0ily0 by

C x1 , y1 , x2 , y 2 , k , l =max 0,1−r  kx1iy1
2kx2iy2

2

To aid computation Norton et al. initially use an approximation to the sinc function from

Daniel Rhodes 96

Chapter 4: Texture Mapping and Aliasing

its low power series. They show that this is suitable for parallelograms which cover a

small region of the texture. For larger regions, it becomes necessary for the frequency to

be multiplied by a suppression factor which “clamps” the result of the sinc function

between the values of 0 and 1.

Figure 45 shows a comparison between a chequerboard texture which has been point

sampled and one which has had its high frequency terms clamped. The clamped image

shows that high frequencies have been suppressed, thus reducing aliasing when

compared to the point sampled image.

There is one major drawback to the clamping method, it only works for textures which

are defined as a set of Fourier terms. These terms can be obtained either by Fourier

analysis or synthesised directly by sums of sine and cosine waves. This restricts the

variety of textures which can be antialiased by this method.

Daniel Rhodes 97

Figure 45: Clamping comparison images

a) Point Sampling

b) Clamping

Chapter 4: Texture Mapping and Aliasing

Advantages Disadvantages

Significantly reduces aliasing Clamping only works for textures which
are defined as a set of Fourier terms

Table 11: Clamping: advantages and disadvantages

4.2.11 4.2.11 Texture Potential MIP MappingTexture Potential MIP Mapping

exture Potential MIP Mapping, or TPM presents a hybrid approach combining

Cant and Shrubsole's Texture Potential Mapping [66] with industry standard

MIP mapping techniques in an effort to aid efficiency and performance.

T

Cant and Shrubsole [66] propose a system which follows the form of each projected

pixel faithfully. Antialiased textures are produced by taking an average intensity over all

the texels that lie within the pixel footprint. This is achieved by integrating the texture

within the pixel footprint by taking into account only those values that lie around the

edges of the pixel footprint, in a similar manner to Gauss' theorem in physics. Standard

MIP mapping takes over in the non-summed direction to reduce overheads at the

expense of some loss in quality.

Advantages Disadvantages

Compares favourably against competing
algorithms such as footprint assembly [75]

Typically requires 1.5 times the memory
of the original texture pattern, compared to
1.33 for conventional MIP mapping alone

Table 12: TPM: advantages and disadvantages

Daniel Rhodes 98

Chapter 4: Texture Mapping and Aliasing

4.2.12 4.2.12 ConclusionsConclusions

s can be seen from the above much research and development has been

expended in the area of texture filtering since the advent of texture mapping.

The current best practice, widely used and seminal techniques have been investigated,

resulting in the conclusion that no one technique currently provides a complete solution

to the texture aliasing problem.

A

It is generally accepted that EWA is the current best practice technique for overall

texture quality, but this has to date precluded a real-time implementation. The GPU

vendors “Anisotropic” filtering techniques are the most widely used currently, but these

provide very little impact on aliasing when compared to more advanced techniques like

EWA and Feline.

As such it must be concluded that there is much work still to do in this area and that any

research aiming to improve texture quality in real-time systems can only add to the

knowledge of the community.

4.3 4.3 Fourier TexturesFourier Textures

s previously discussed, to date the majority of texture filtering techniques deal

solely with treating the symptom of aliasing and artefacts. Therefore, most

techniques largely ignore the root cause of these effects, which are commonly a product

A
Daniel Rhodes 99

Chapter 4: Texture Mapping and Aliasing

of under-sampling.

Under-sampling can be described as: the sampling of frequencies above the image's

Nyquist limit, which is a limit of at least twice the maximum frequency of the source

signal. This is as defined by the sampling theorem [63][64]. An ideal solution would be

to simply provide enough samples to overcome aliasing, however in computer graphics

this is often an impossible task to achieve, as monitor resolutions are a limiting factor

for sampling frequency, and so some degree of aliasing is, to a large extent inevitable.

It is proposed that filtering should be carried out at the pre-processing stage to remove

the troublesome frequencies which fall above the range of the original image's Nyquist

limit [63][64].

Fourier Transforms [77] are used to convert data into frequencies. This can be used to

convert image space data into Fourier space, giving the image in terms of frequencies

rather than colour data. This should not be done for all types of data but only for data

where an analysis of frequencies is appropriate and meaningful.

It can be shown that, by filtering out weaker frequencies and retaining only a set of

more dominant frequencies, an image can be recreated to a sufficient visual quality by a

reverse Fourier transform on this sub-set of image data. In addition it is suggested that

the frequencies-based representation in Fourier space will allow much easier and more

effective filtering of an image, thus allowing frequencies which fall above the range of

Daniel Rhodes 100

Chapter 4: Texture Mapping and Aliasing

the original image's Nyquist limit to be easily identified and removed, and hence

reducing aliasing.

4.3.1 4.3.1 Fourier Textures TechniqueFourier Textures Technique

In order to assess the validity of the Fourier texture filtering theory, the practicalities of

representing images using only a subset of their frequencies need to be established.

Thus, a software based testing environment is required for this purpose. Written using

C++ and Windows GDI+, the testing environment initially performs a Discrete Fourier

Transform (DFT) on an image to obtain its representation in Fourier space.

Originally, Fast Fourier Transforms (FFT) were investigated for this task, but after this

consideration it was decided that they are too costly in terms of implementation time

and flexibility. There are many variations of FFT, such as those described by Smith [48],

each of which has specialist applications, advantages and drawbacks. For example,

some are limited to power of two values for N. While FFT's do provide considerably

better performance37 they are much more complicated to implement, and suffer from a

number of limitations when compared to DFT's. DFT's are also less constricted, simpler

and easier to control, this is particularly important here given the need to control

frequency content, in order to allow proper evaluation of the technique.

The next stage is to order the frequencies by magnitude and to retain only the top n

frequencies, while filtering out those frequencies which fall above the range of the

37 (N2) compared to O(N.logN)

Daniel Rhodes 101

Chapter 4: Texture Mapping and Aliasing

original image's Nyquist limit. These filtered frequency sets are then supplied as

parameters to a reverse DFT resulting in the set of frequencies being transformed back

into image space. This proves useful in attempting to discover how many frequencies

n  it takes to represent a texture to a standard either indistinguishable from the

original to the naked eye, when displayed on a computer monitor, or at least to a level

that makes a reasonable approximation of the original image.

The most difficult part of this process is the reconstruction and filtering of an image

from Fourier space, which it is intended will eventually be performed via hardware

accelerated vertex and fragment shaders.

Initially, as a proof of concept, the process shall be investigated via the use of

procedurally generated textures to attempt to ascertain whether or not the technique

reduces aliasing as anticipated. This approach is an extension of the work by Cant and

Shrubsole [66] and is based on the mathematical work of Richard Cant, this is as

follows:

Let the original texture pattern be defined as:

AxT 

Let the original pixel filter be:

 xS

Where xS is a position vector relative to the centre of the pixel.

Daniel Rhodes 102

Chapter 4: Texture Mapping and Aliasing

The sampled value for a particular point is now defined as:

x0=∫ d 2 xSxS− x0xT x S

For a particular pixel with the screen co-ordinates i, j this becomes:

ij=∫ d 2 xS xS− x ij xT xS 

If it is assumed that:

x R=x S−x ij

Therefore, it must follow that:

x ij=∫ d 2 xRx R xT  xR x ij

So assuming that, in the region where  is significantly larger than zero, the transform

between the screen coordinates and texture coordinates can be adequately approximated

by a linear transform xT , with some matrix M describing it:

xT x Rx ij =xT x ijM x R

The variation in perspective at this point is minimal so it is safe to assume linearity for

the transform. This transformation is built from the derivatives of the texture co-

ordinates with respect to the screen co-ordinates, which are directly obtainable under the

fragment shader and hence should allow implementation in hardware.

This gives:

x ij=∫ d 2 x Rx RxT x ij M xR

Daniel Rhodes 103

Chapter 4: Texture Mapping and Aliasing

Next formulate the texture in Fourier transform form:

 x=∫ d 2 p  pe ip⋅x

ij=∫d 2 p∫ d 2 xRxR  p e ip⋅xT x ijM x R

Thus:

ij=∫ d 2 p  pe ip⋅ xT x ij∫ d 2 xRxReip⋅M xR

Let:

1.  xR=
1
N

e
−

x R⋅xR

22

Which is a Gaussian, including the normalisation (N) factor to ensure that:

∫ d 2 xR xR=1

So now including the frequency space variable p , this gives:

ij=
1
N
∫ d 2 p  peip⋅xT xij∫ d 2 x R e

ip⋅M °x R−
xR⋅x R

22

It is noted that:

−
1

2 2 
2 ip⋅M−x R

2=
 2

2
 p.M 2ip⋅M⋅x R−

x R⋅x R

2 2

Completing the square in the exponent will give:

ij=
1
N
∫ d 2 p  pe

ip⋅ xT x ij−
2

2
 p⋅M 2

∫ d 2 xR e
− 1

22 
2ip⋅M−xR

2

As the integration over x is infinite the “centre” of the integration can be shifted by

changing variables to:

Daniel Rhodes 104

Chapter 4: Texture Mapping and Aliasing

y=2 ip⋅M−x R

Without changing the value of the integral.

The integration over y (formerly x) will cancel N to leave:

ij=∫ d 2 p   pe
ip⋅xT xij −

2

2
 p⋅M 2

Now if the texture consists of a discrete set of frequencies pk each with an amplitude

k this reduces to a discrete sum:

2. ij=∑ k e ipk⋅xT xije
−2

2
 pk⋅M 2

38

Note that the suppression factor38 “belongs” to the individual component in the sum and

must be applied individually.

Everything thus far has been done in complex number form, as it is more convenient for

calculation. However, it is now required to take the real part of everything so:

e ipk⋅ xT x ij

becomes:

cos  pk⋅xT xoj

It is noted that the suppression factor will not change if the phase of the sine wave

changes:

cos  pk⋅xT xoj  cos  pk⋅xT xoj 

38 Suppression factor e
−2

2
 pk⋅M 2

 relates to the anti aliasing factor applied in section 4.3.2 onwards.

Daniel Rhodes 105

Chapter 4: Texture Mapping and Aliasing

If the frequency variations are small then the change will also be small. So a slow

variation of phase across the texture will not affect things too much as it will only

introduce frequencies near the base frequency. This effect has been exploited previously

by things such as the Narrow Band Noise Model [78]. In fact it should be possible to get

away with a slow variation of frequency and amplitude too, as is common practice when

dealing with FM and AM radio signals. This can be exploited to produce more

“interesting” textures without needing a lot of extra frequency components.

Now split the p integral into two with the dividing point p0 where:

p0 M x R≈0

For all values of x R such that:

 xR≠0

p0 is such that it does not change significantly over the pixel footprint, which is

defined by  xR . It is thus defined by the “large” axis of  xR .

ij= ∫
p p0

d 2 p  p e ip⋅xT x ij ∫
p p0

d 2 p  peip⋅ xT x ij∫ d 2 x Rx Re
ip⋅M xR

The first term on the right hand side gives the traditional MIP Map contribution.

Now define p1 such that:

∣p1 M∣x RM

Where x RM is the radius of the circle within which  39 is greater than zero. It follows

39 See equation 1.

Daniel Rhodes 106

Chapter 4: Texture Mapping and Aliasing

that the x R integral will be zero for values of p greater than p1 because the integrand

is oscillating over more than one cycle in that region. p1 is thus defined by the “small”

axis of  xR .

This leaves the following:

ij= ∫
p p0

d 2 p  peip⋅xT x ij  ∫
p1 p p0

d 2 p  pe ip⋅ xT x ij ∫ d 2 xR xRe
ip⋅M x R

Now write the integral:

 p⋅M =∫ d2 x Rx Re
ip⋅M xR

And so:

ij= ∫
p p0

d 2 p  p e ip⋅xT x ij ∫
p1 p p0

d 2 p   peip⋅xT x ij    p⋅M 

Unfortunately this list of frequencies from p1 to p0 is likely to be quite long so a bit

more work in x space is required first, so go back to the equation:

ij=∫ d 2 xR xR xT x ij M x R

And expanding the texture function locally around each pixel:

3.  xT  xijM x R=xTmnxT x ij −xTmnM xR

4.  xT  xij M xR=mnRmn xT  x ij −xTmnM x R

Substituting equation 3 into the integral gives:

ij=∫ d 2 xR xRmn∫d 2 x Rx RRmnxT x ij− xTmnM x R

Daniel Rhodes 107

Chapter 4: Texture Mapping and Aliasing

Now concentrate on the second term in this equation, since the first is just the

appropriate MIP Map entry.

Moving to Fourier transform representation gives:

ij=∫ d 2 p∫d 2 x Rx R Rmn p e ip⋅xT x ij−xTmnM xR

or

ij=∫ d 2 p Rmn p e ip⋅xT x ij−xTmn∫ d 2 x Rx Re
ip⋅M xR

Now Rmn  p will only contain wavelengths shorter than the spacing between points in

the MIP Map, so there is no need to set a lower bound p0 . Choosing p1 as before:

ij=∫ d 2 p Rmn p e ip⋅xT x ij−xTmn  p⋅M 

This way the technique can either be applied to an existing MIP mapping system or used

in conjunction with its own procedurally generated textures such as those shown in

Figure 47. Figure 46 shows the HLSL shader code used to create the images in Figure

47, the variable names relate to the mathematics shown above. The shader code takes in

a number of parameters, including: the colours to use for the generated texture, x and y

frequencies, phase, offsets, an amplitude and a filter width. These parameters are used to

adjust the texture pattern created as well as the antialiasing factors.

Daniel Rhodes 108

Chapter 4: Texture Mapping and Aliasing

4.3.2 4.3.2 ResultsResults

t this stage it is only the visual results which are important, this is in order to

ascertain that aliasing is suppressed as expected. Figure 47 shows the results of

pairing the technique with procedurally generated textures as described mathematically

above. The technique shows promising results as, with an appropriate filter width set,

the technique removes all visible aliasing under test conditions. This includes motion

A

Daniel Rhodes 109

Figure 46: Rendermonkey shader code

float4 ps_main(PS_INPUT Input) : COLOR0 {
const float PI = radians(180);
float2 Texcoord = (256 * PI) * Input.Texcoord;
int k;
float x= Texcoord.x + xoffset;
float y = Texcoord.y + yoffset;
float fT, fHk, fGk = 0.0f;
float2 dtx = ddx(Texcoord);
float2 dty = ddy(Texcoord);
float2x2 mM = float2x2(dtx.x, dty.x, dtx.y, dty.y);
float2 vP0qk, fpdotM0qk, vPpk0, fpdotMpk0, vPpkqk, fpdotMpkqk, vPpkminusqk,
fpdotMpkminusqk;
float fS0qk, fSpk0, fSpkqk, fSpkminusqk;
// loop through the number of terms
for(k = 0; k < NTERMS; k++) {

vP0qk = float2(0, yfreq);
fpdotM0qk = mul(vP0qk, mM);
fS0qk = exp(-((fFilterWidth / 2) * dot(fpdotM0qk, fpdotM0qk)));
vPpk0 = float2(xfreq, 0);
fpdotMpk0 = mul(vPpk0, mM);
fSpk0 = exp(-((fFilterWidth / 2) * dot(fpdotMpk0, fpdotMpk0)));
vPpkqk = float2(xfreq, yfreq);
fpdotMpkqk = mul(vPpkqk, mM);
fSpkqk = exp(-((fFilterWidth / 2) *dot(fpdotMpkqk, fpdotMpkqk)))
vPpkminusqk = float2(xfreq, -yfreq);
fpdotMpkminusq = mul(vPpkminusqk, mM);
fSpkminusqk = exp(-((fFilterWidth / 2) * dot(fpdotMpkminusqk, fpdotMpkminusqk)));
fHk = 0.5 * (cos((xfreq * x) + (xfreq * xphase) - (yfreq * y) - (yfreq * yphase))) *
fSpkminusqk + (cos((xfreq * x) + (xfreq * xphase) + (yfreq * y) + (yfreq * yphase)) *
fSpkqk);
fGk = (cos((xfreq * x) + (xfreq * xphase)) * fSpk0 + cos((yfreq * y) + (yfreq * yphase)) *
fS0qk);
fT += (pow(amplitude, 2)) * (pow(offset, 2) + offset * fGk + fHk);
xfreq = 0.9 * xfreq;
yfreq = 0.9 * yfreq;

}
fT = saturate(fT);
float4 vTexColour = lerp(backColour, spectralColour, fT);
return (vTexColour);

}

Chapter 4: Texture Mapping and Aliasing

aliasing, which is difficult to demonstrate with the static images presented in Figure 47.

Although difficult to demonstrate with the static images of Figure 47, the technique

does indeed have the desired anti-aliasing effect for procedurally generated textures.

Next it is required to establish that a subset of frequencies can provide a reasonable

approximation of an image, that is acceptable to the human eye. Both Figure 48 and

Appendix A provide demonstrations of what it is possible to recreate using only a subset

of frequencies.

A wide variety of textures were tested in order to ascertain whether different types of

texture are more or less suitable for this technique 40. The original texture size for these

tests was 128x128. These dimensions were chosen to give the technique a reasonably

sized pool of frequencies to work from while minimising the time taken to test each set.

At the chosen resolution the original images will consist of 16384 individual pixels, this

equates to 16384 frequencies in Fourier space.

40 See Appendix A.

Daniel Rhodes 110

Figure 47: Anti-aliased procedurally generated textures

Chapter 4: Texture Mapping and Aliasing

Daniel Rhodes 111

Figure 48: Software Frequency Tests: Brick Wall

c) 2500 frequencies

f) 250 frequenciese) 500 frequencies

d) 1000 frequencies

i) 25 frequencies

g) 100 frequencies

a) Original

j) 10 frequencies

b) 5000 frequencies

h) 50 frequencies

Chapter 4: Texture Mapping and Aliasing

From the example test images it can be seen, that 5000 frequencies provides an

approximation almost indistinguishable from the original for most types of texture

tested, with most still having easily recognisable features of the original right down to

250 or even 100 frequencies in some cases. This shows us that a texture can be

accurately represented by around 30% of its original frequency content. Similarly it

shows us that textures can still be distinguishable with as little as 0.006% of the

texture's original frequency content.

As these tests were performed as a software process, at this stage the performance is

fairly slow. Thus, the next step is to ascertain how well the same tests perform when the

technique is implemented in hardware vertex and fragment shaders. Doing this will

enable us to evaluate the practicalities of running such a technique on a real-time system

alongside other existing techniques such as bump mapping, in order to create a whole

scene.

Figure 49 and Appendix B show comparisons between the software and hardware

(shader) based versions of the Fourier textures technique. At first glance both versions

appear to give similar results. However, on closer inspection it becomes apparent that

there are slight differences between the two. This was an extremely difficult problem to

diagnose given that the hardware version was expected to yield identical results but to

process the data much quicker. After careful analysis it became clear that this was in fact

an issue caused by deficiencies within the test hardware itself, due to the inherent

inaccuracies in the calculations of the NVIDIA 6800 series GPU; on which the test

Daniel Rhodes 112

Chapter 4: Texture Mapping and Aliasing

system is based. This meant that the slightly poorer visual quality in the hardware

version's results were simply down to less accurate calculations being available on the

hardware platform.

Daniel Rhodes 113

Figure 49: Hardware Frequency Tests: Brick Wall

b2) 25 frequencies

b) Software

c) Hardware

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

Chapter 4: Texture Mapping and Aliasing

Another limitation imposed by the hardware platform is that, due to the way shaders

perform loop operations and the requirements of calculating multiple frequencies per

pixel, it is only possible to achieve a maximum of 256 frequencies per pixel. However,

this in itself is not considered a major issue for the current hardware generation as real-

time performance is lost long before reaching that level.

4.3.3 4.3.3 ConclusionsConclusions

espite the accuracy problems, and due to the small visible differences in quality

between the hardware and software versions, it is still considered worthwhile

pursuing this technique further. However, given the large number of frequencies

required to represent an image at a reasonable visual quality and the performance

implications of that (Performance is covered in greater detail in section 4.4.3), it will be

necessary to reappraise the use of the technique. This may be achieved by combining

the technique with currently known and widely used techniques such as MIP mapping.

D

4.4 4.4 Fourier Texture FilteringFourier Texture Filtering

iven the performance issues involved with representing images purely in terms

of a subset of their frequencies, it is considered necessary to attempt to combine

the technique with MIP mapping.

G

When done efficiently, standard MIP map tables include frequencies right up to the

Daniel Rhodes 114

Chapter 4: Texture Mapping and Aliasing

Nyquist limit for their resolution. However, by harshly filtering the MIP maps and using

a variation of the Fourier Textures technique to add filtered frequencies back to the

filtered MIP maps before they are rendered, it should be possible to remove aliasing in a

similar manner to that already shown. This will also have the effect of adding back

some detail thus potentially preventing over blurring.

This variation of the technique should be able to achieve real time performance while

not sacrificing too much in terms of image quality. It should also maintain low levels of

aliasing. The process of harshly filtering the MIP maps to below their Nyquist limits

should remove many potential causes of aliasing, although this will be at the expense of

texture detail. This detail however will be added back into the final image one

frequency at a time via the Fourier technique discussed earlier.

4.4.1 4.4.1 Fourier Texture Filtering TechniqueFourier Texture Filtering Technique

s previously discussed the Fourier textures technique consists of two steps.

Firstly there is the pre-processing software stage, as shown by Figure 50 and

Figure 51, which consists of MIP map and Fourier frequency set generation. Then there

is the hardware shader stage, as illustrated in Figure 52, which brings all that data

together to create the final image.

A

The key feature of this technique is that it's built upon standard MIP mapping

techniques whereby the standard MIP mapping system is supplied with pre-filtered MIP

Daniel Rhodes 115

Chapter 4: Texture Mapping and Aliasing

maps. These maps have been harshly filtered to below the image's Nyquist limit in order

to remove as much aliasing as possible.

1.43 times the texture storage is required over and above that needed for standard

texture filtering to hold the Fourier information. As the currently available texturing

facilities are not ideally suited to storing this data the Fourier information must be

organised and retrieved manually. The layout of this structure is sequential, whereby an

appropriate sized section of texture memory must be allocated to hold the required

number of frequencies. The frequencies are then simply fed into the structure by order

of magnitude. Considering there is a maximum of 256 frequencies possible on the test

hardware, the requirements of this are fairly simple.

Daniel Rhodes 116

Figure 50: MIP Map and Frequency set creation

a) Load
Texture from

file

e) Decimate
full size image
to create MIP

map sets

c) Eliminate
frequencies

above Nyquist
limit

ii) Output
frequencies to

file

i) Add
discarded
values to

frequency set

d) Perform
reverse DFT

to obtain
filtered texture

b) Perform
DFT to obtain
full frequency

set

f) Output MIP
maps to file

Chapter 4: Texture Mapping and Aliasing

Daniel Rhodes 117

Figure 51: Software stage

Taking an 128x128 source texture as an example:

a) Load texture data from a bitmap file.

b) Perform a discrete Fourier transform on each pixel of the input

image to give a full set of Fourier frequencies.

c) Filter out all frequencies above the Nyquist limit (those beyond

the quadrant between (0,0), (0,63), (63,63) and (63,0) in

Frequency space) and:

i. Retain the Zero (x = 0, y = 0) frequency for all levels. Add

the remaining discarded values (frequencies above the

Nyquist limit) to frequency sets. Which set a frequency is

added to depends one of four pre-selected angle ranges

(22.5°, 67.5°, 112.5°, 157.5°) and level of detail

considerations. This is because the most “important”

frequencies for any given texel will depend on sample

footprint, level of detail, and angle to the viewer.

ii. Output the frequency sets to file.

a) Perform reverse DFT to obtain filtered texture.

b) Decimate full size image to create MIP map sets. For example to

obtain the 64x64 MIP map every 1 pixel in 4 is taken from the

original 128x128 texture.

c) Output MIP maps to file in an appropriate image format, such as

a bitmap.

Chapter 4: Texture Mapping and Aliasing

There is one complication however. Each Fourier frequency consists of 8 components41

as opposed to the usual 4 components per pixel (RGBA). This requires the manual

calculation of texture co-ordinates within the shader and leads to the requirement of two

texture fetches per Fourier frequency. Whilst obviously not ideal this would be easily

solved by the additional hardware functionality of an 8 component per pixel texture type

or the ability to create custom texture fetch functions.

41 The real and imaginary components of the frequency contribution

Daniel Rhodes 118

Chapter 4: Texture Mapping and Aliasing

4.4.2 4.4.2 Texture SelectionTexture Selection

n order to properly compare the algorithm against others of its type, tests must be

run for many different textures and resolutions. This is in order to ascertain what

effect, if any, the differing patterns and resolutions have on final image quality and

I
Daniel Rhodes 119

Figure 52: Hardware stage

Initialise OpenGL

Load texture data from the MIP map files and Fourier text files

For each MIP map level

Load image data into appropriate OpenGL texture MIP Map

level

Set Texture parameters

Load frequency set data

While not end of file

read frequency

add frequency to frequency array

Load frequency array into OpenGL texture

Initialise shaders

Render scene

For each pixel

Calculate level of detail

Calculate texture coordinates

For each frequency

Sample texture to fetch frequency

Calculate suppression factor (see section 4.3.1, equation 2)

Calculate contribution from frequency content (see section

4.3.1 and Appendix I)

Apply suppression factor

Perform standard bilinear/trilinear filtering on MIP map texture

Combine results to final pixel colour using weighting factor

Chapter 4: Texture Mapping and Aliasing

performance. The choice of textures and resolutions, since it cannot be made arbitrarily

or exhaustive, must therefore be carefully selected and justified.

The test textures are selected to include types of textures which are commonly found

within games and simulations, textures commonly used for testing texture filtering

algorithms and textures explicitly chosen for their Fourier footprints. Textures chosen

on the basis of their Fourier footprints are selected if it is considered that they may

cause issues with the Fourier technique, this is in order to properly test the technique.

Figure 53 and Appendix C show screen shots from a selection of games which have

been released since the year 2000. All the games displayed are either award winners or

topped the sales charts for PC games at some point in the year of their original release.

Therefore, this sample can be considered representative of popular computer games of

their time and hence the texture content they used may also be considered representative

of popular video games of their time.

The games sampled show large variations in both visual style and content. However,

there are common themes running through many of the textures seen in each. This helps

demonstrate that common textures used in games since the year 2000 include things

such as grass, brick, stone, metals, wood and cloth. There is a fairly obvious pattern

amongst these textures, as they are all things commonly seen in the real world on a day

to day basis. This pattern is evident because games companies often strive to simulate

what is, what was and what may be, as realistically as current hardware allows. It can

Daniel Rhodes 120

Chapter 4: Texture Mapping and Aliasing

therefore be concluded then that common textures used in games are simplified or re-

imagined versions of the same images seen every day in the real world, meaning things

such as lawns, brick walls, clothes and roads are all commonly simulated in games.

Given the types of textures commonly used in games, the images in Figure 54 were

selected as candidates for testing and provide a representative set of the kinds of texture

commonly found in games. However, for the purposes of testing the Fourier technique,

it is not enough to be representative of game textures; the test images must also provide

a suitably wide variety of Fourier footprints in order for the system to be properly

tested.

After examination it is expected that this set will give a suitably wide spectrum of

Fourier footprints, with textures such as Figure 54 a) Brick giving fairly even axis

aligned horizontal and vertical frequency distributions, textures such as Figure 54 d)

Daniel Rhodes 121

Figure 53: Half-Life 2: Episode Two, 2007

Chapter 4: Texture Mapping and Aliasing

grass giving a fairly random distribution of frequencies, and textures like Figure 54 b)

Fence and Figure 54 h) stripes showing a strong frequency bias in one direction.

In order to confirm these assumptions are correct, it is necessary to transform each

image into Fourier space. This will give us an indication of the overall frequency

content, in particular the dominant frequencies direction and bias. It is necessary to

produce histograms from the Fourier space frequencies, this allows a more accurate

gauge of the frequency spread for each texture, and hence the impact particular

frequencies and frequency ranges should have in image space. The resultant histograms

and Fourier space representations are presented in Figures 55 and 56.

Given the requirements, Figure 55 and Figure 56 show the image space, Fourier space

and Fourier space histogram representations of the images for comparison. Only the red

channel is compared here. As the analysis is required to differentiate between the

images and not the different colour channels, for which the red channel alone is

Daniel Rhodes 122

Figure 54: Textures for Testing
f) Metal

c) Flowersb) Fence d) Grass e) Hex

g) Stone j) Waveh) Stripes i) Text

a) Brick

Chapter 4: Texture Mapping and Aliasing

Daniel Rhodes 123

Figure 55: Red Channel Histograms

a) Brick red channel range limited

-32 0 32

b) Fence red channel range limited

d) Grass red channel range limited

e) Hex red channel range limited

c) Flowers red channel range limited

f) Metal red channel range limited

-32 0 32 -32 0 32

-32 0 32 -32 0 32

0 64 0 64

0 64 0 64

0 640 64

-32 0 32

Chapter 4: Texture Mapping and Aliasing

adequate. A full listing of red, green and blue histograms is available in Appendix D.

The Fourier space representations depict the distribution of the frequencies which

represent each image. The brighter white areas of the Fourier space representations

indicate a higher concentration of frequencies, and the histograms show the frequency

of each of those Fourier frequencies. These are presented on a scale of -32 to 32, which

corresponds to the 0 to 64 pixels of the image space representation.

The brick texture is analysed in Figure 55 a), it shows that the brick pattern gives a

fairly even distribution of frequencies in Fourier space. As expected, it is aligned on the

horizontal and vertical axes, which represents the mortar lines in image space, although

it does display a slight bias towards the vertical (the horizontal mortar lines in image

space). The histogram confirms this with the separate peaks representing areas of denser

frequency population in the Fourier space illustration, with a gradual tail off towards the

lower frequencies. The weaker and slightly more randomly positioned frequencies

observed represent the pattern of the brick surface. It is these fine details of the texture

which will prove most difficult for the Fourier technique to recreate. This is because the

nature of the technique relies on strong dominant frequencies being able to represent the

majority of the image. The dominant mortar lines of the wall should be the easiest part

of this pattern for the Fourier technique to reproduce, using a fairly low number of

frequencies. However, the presence of two dominant frequency ranges will push the

required number of frequencies up and this may result in the mortar pattern being lost

with lower numbers of frequencies.

Daniel Rhodes 124

Chapter 4: Texture Mapping and Aliasing

Figure 55 b) displays a very strong vertical frequency component in Fourier space. This

represents the horizontal fence slats and wood grain in image space. The histogram and

Fourier space representations demonstrate a higher concentration of high frequencies

than in texture a), as well as a higher rate of fall off towards the lower frequencies.

Again, some more random patterns are visible from the wood grain, but the majority of

these are still fairly well aligned with the general vertical layout of frequencies. This

Daniel Rhodes 125

Figure 56: Red Channel Histograms

c) Text red channel range limited

-32 0 32

0 64

b) Stripes red channel range limiteda) Stone red channel range limited

-32 0 32 -32 0 32

0 64 0 64

d) Wave red channel range limited

-32 0 32

0 64

Chapter 4: Texture Mapping and Aliasing

indicates that the fence texture should provide better results for lower number of

frequencies than many of the other patterns. However, the fine detail of the wood grain

will only be reintroduced by the technique at much higher frequency levels, most likely

beyond the realms of acceptable performance levels.

Figure 55 c) again shows mostly higher frequencies which is to be expected of such a

regular pattern repeated in both the x and y directions. This repetition also gives a much

more even spread in Fourier space. Unlike the previous two examples no particular

orientation is dominant. This should enable the Fourier technique to easily pick out the

major features of the pattern even for lower number of frequencies, meaning this pattern

should give favourable results at steeper angles.

Figure 55 d) is a much more random pattern in image space, and as such gives a much

more random spread of frequencies in Fourier space. While the higher frequencies are

again dominant in the histogram, there is a lower peak along with a more gradual and

even fall off than in the previous examples. The randomness of the image gives a fairly

even spread of frequencies in Fourier space with no particular orientation being

dominant. Consequently it will be difficult for the Fourier technique to accurately

represent the pattern with low numbers of frequencies, and will likely result in a fairly

solid green at steep angles. This is not necessarily a problem, as this kind of fine random

pattern will tend to do the same, to a lesser extent, in optical systems at steep angles.

Figure 55 e) provides a much wider spread of frequencies than the previous examples.

Daniel Rhodes 126

Chapter 4: Texture Mapping and Aliasing

This is displayed in all directions, with a slight dominance amongst the higher

frequencies. The lack of a set of any obviously dominant frequencies here is a factor of

the pattern having fine detail on the weave of the hexagon shapes. Again, this is a

feature that is likely to be lost without the use of very high numbers of frequencies.

precluding real-time operation. However, this is not necessarily a problem as, at steep

angles, some of this detail would also be lost in an optical system.

Figure 55 f) like Figure 55 e) gives a much wider spread of frequencies than the

previous examples. This is displayed in all directions, but with a greater dominance

amongst the higher frequencies. This is caused by the grain of the metal, with the

brightest spots in Fourier space being representative of the diagonal patterns. These

dominant diagonal patterns should prove easy to represent with relatively few

frequencies, but again the fine grain of the detail will be lost with all but the highest

frequency numbers. Again, an optical system would also lose some of the fine detail at

sharper angles.

Figure 56 a) shows an interesting dominance of frequencies along the the diagonals in

Fourier space. This shows that despite the uniform appearance you may expect from the

pattern in image space, with a more or less equal balance due to the stones all being

multi sided and non uniform, there is actually a dominance of diagonal frequencies.

Again the lack of any particularly dominant frequencies may cause issues with the

Fourier method at lower numbers of frequencies.

Daniel Rhodes 127

Chapter 4: Texture Mapping and Aliasing

Figure 56 b) illustrates the clear dominance of a narrow range of frequencies in one

plain. Because of this, the stripe texture should give the best results with fewest

frequencies, however the orientation of the texture when viewing may adversely effect

this as some of the frequencies sets will contain relatively few of these dominant

frequencies.

Figure 56 c) may well prove the most difficult of the textures to represent without an

almost full set of frequencies. This is because, as you would expect with text, there are

no real dominant frequencies or patterns within the image. Text patterns are a widely

known problem for anti-aliasing techniques and prove to be the downfall of many

otherwise promising techniques. This shall be the biggest test of the Fourier method.

Figure 56 d) gives a much wider spread of frequencies than the previous examples, even

the text, but with a greater dominance among the higher frequencies this pattern should

prove slightly more favourable for the Fourier technique.

It has been shown that the selected group of textures have a suitably wide variety of

Fourier footprints, while sticking with the mandate of examining textures used

commonly in games. These common game textures include those such as Figure 56 a),

and Figure 56 c) provides an example of a texture commonly used for testing texture

filtering algorithms. The variety of Fourier footprints, as shown in Figure 55 and Figure

56, should aid us in determining which types of texture give favourable results with the

Fourier system, which cause issues, and whether or not the above expectations are borne

Daniel Rhodes 128

Chapter 4: Texture Mapping and Aliasing

out.

Given the processes involved in filtering the textures and generating the frequency sets,

it would be expected that the technique should perform well on those textures with little

variation in Fourier space, or where the majority of the frequencies lie on the same

plain. This would indicate regular patterns like Figure 56 b) should be reproduced well

via the Fourier method.

These textures are to be tested at resolutions of 64x64 to 1024x1024. This is in order to

show both resolutions representative of textures used in games at the higher end of the

scale, and at the lower end it shall be shown that lower resolution textures need not

necessarily mean sub-standard detail. This will enable us to demonstrate whether the

technique will allow the use of lower resolution textures, compared to those which are

currently standard within the industry, to be feasibly used within games. This has the

advantage of requiring less processing and will therefore potentially improve

performance. It should be noted however that while the higher size textures chosen are

representative of the games industry at the time of writing the average size of textures

used has been steadily increasing and may continue to do so for the foreseeable future.

4.4.3 4.4.3 ResultsResults

n this section, the Fourier Texture Filtering (henceforth Fourier) algorithms'

performance is analysed after translation into hardware shaders. The results will be I
Daniel Rhodes 129

Chapter 4: Texture Mapping and Aliasing

compared against exemplars of current best and accepted standard practice within the

games and simulation industries. Comparisons against real world images taken by an

optical system shall also be made.

The comparisons with real world images of the textures will provide an important gauge

of success for all the techniques observed, not only the Fourier techniques. Through

comparisons of the textures with real world images, it shall be possible to see how close

these techniques come to being able to simulate real world situations, and which, if any,

of the visual defects shown by the techniques are naturally occurring within optical

systems.

It is important to note when examining real optical images that optical systems suffer

from defects such as depth of field, as such it is necessary to use a very high quality

source for the comparison images. This is in order to rule out any interference from such

defects in the comparisons, as none of the techniques presented in this section attempt to

simulate depth of field.

Daniel Rhodes 130

Chapter 4: Texture Mapping and Aliasing

With this in mind high-resolution printed versions of the textures were created and

applied to a real world object. This object is sized in proportion with the simulated cube.

The real-world object was positioned in front of a digital still camera in such a way as to

mirror the simulated environment. Figure 57 shows the arrangement used for obtaining

the optical images, as the parameters of the simulation are known, the organisation and

set-up of the optical scene was simply a matter of matching these parameters in the real

scene.

In order to avoid the undesirable effect of depth of field the system was set-up to

produce images which are far too sharp and high in resolution to provide fair

Daniel Rhodes 131

Figure 57: Set-up for producing the optical comparison images

Chapter 4: Texture Mapping and Aliasing

comparison against the simulated textures. Because the simulated textures are limited

by the output resolution of the hardware, it is required that the resultant optical images

be re-filtered to a resolution which makes the desired comparisons appropriate and fair.

The results of the re-filtering process are shown in Figure 58. The process involves first

filtering down the original high resolution image by approximately a factor of four and

then filtering the resultant image back up to the original image size via the same

filtering method. The well defined and well understood nature of optical images allows

the use of a high quality isotropic filter42, such as that proposed by Mitchell and

Netravali [79], without needing to worry about many of the issues discussed earlier

which plague filtering techniques in the 3D graphics domain.

The final filtered image shown in Figure 58 b) gives an example of the appropriate level

42 Isotropic filters are ideal here as they are independent of directional constraints.

Daniel Rhodes 132

Figure 58: Original Vs Re-filtered version of the Brick texture
a) Original b) Re-filtered

Chapter 4: Texture Mapping and Aliasing

of detail for proper comparison with the presented techniques. As mentioned, to directly

take an optical image with these parameters would result in image blurring due to depth

of field rather than purely by the resolution constraints required here. However, it

should be noted that even with these precautions in place, various other potential issues

will still effect the final images. This is because colour reproduction, lighting and other

environmental conditions must be taken into account. These issues should not affect the

results however, as it is only image detail comparisons that are required.

The results of tests for all pertinent aspects of each algorithms stated visual goals are

discussed below. Once the success or otherwise of each algorithm is established they are

then performance tested. This is to establish whether or not they are appropriate for real-

time use as is, with optimisation, or not at all on current hardware.

Visual quality will be closely examined and compared to existing similar techniques.

The existing techniques used for comparison are chosen based upon several criteria.

Firstly, current widely used techniques are chosen and any expected and actual

differences in visual quality noted. Secondly, if appropriate, the recognised best case

techniques are used to show how Fourier texture filtering, which is designed for real

time use, compares against techniques with theoretically superior visual quality but non

real-time performance.

It is often noted that 30 Frames Per Second (FPS) is an appropriate goal as a minimum

average frame rate within a game or simulation to “avoid jerky motion” [80], and is in

Daniel Rhodes 133

Chapter 4: Texture Mapping and Aliasing

fact the absolute frame rate set by many games, such as the Grand Theft Auto series .

This gives the same result as activating vertical synchronisation or v-sync in your

graphics driver settings, it helps prevent tearing artefacts caused by uneven frame rates.

Using this figure of 30 FPS as a goal for the Fourier algorithm when fully optimised for

the target system and integrated into a real-time application, such as a game, the un-

optimised algorithms should display performance relative to the performance of un-

optimised versions of bilinear and trilinear filtering, for which fully optimised hardware

implementations exist for comparison.

As well as visual quality and performance other more subtle elements are discussed,

such as the pre-processing software stage, which some of the techniques require. These

are elements which may not be quantifiable in terms of frames per second or visual

accuracy but still require analysis, as such they will be considered in the context of use

within a game industry setting. Various factors are recorded and analysed, particularly

processing time and man hours taken to generate the data used in each test case, as both

are important considerations for practical use.

Presented below are the testing results for both the hardware and software processes

required for the use of the Fourier techniques. The software side is examined first; this

can be easily done as a batch process, so performance is not necessarily an issue,

although the pre-processing required should be comparable with other techniques. The

testing results for the hardware side are then presented, in which performance and visual

quality are the most important aspects for comparison against the other techniques

Daniel Rhodes 134

Chapter 4: Texture Mapping and Aliasing

examined.

4.4.3.1 4.4.3.1 SoftwareSoftware

valuating the success of the software stage is relatively straightforward as it

simply needs to produce two things, a set of MIP maps with a reduced frequency

content and a set of the top n frequencies which are to be used to add detail back into

the final image.

E

As this part of the technique is an off-line software process which can be easily done in

batch the performance of this is largely irrelevant. As the hardware side of the technique

relies on the software, the success of this stage of the technique can be determined by

the success of the hardware shader process.

4.4.3.2 4.4.3.2 HardwareHardware

nalysing the hardware shader section is much more complex. Success is

measured in a number of ways, either by achieving a better quality final image,

and thus reducing artefacts and aliasing compared to current techniques, or by showing

better performance for a similar level of image quality. Even a slight reduction of

aliasing can be considered a success, as long as not too much image detail is lost in the

process.

A

Daniel Rhodes 135

Chapter 4: Texture Mapping and Aliasing

In order to test the Fourier algorithm it needs to be compared against suitable and

currently available techniques. Those which represent both the current de-facto standard

techniques within the industry and also the highest quality techniques available must be

selected. Therefore, “Anisotropic filtering”, as utilised on current generation graphics

hardware, and EWA have been chosen for comparison purposes.

EWA has been selected as a suitable benchmark for image quality because, as

McCormick et al [70] state: EWA “provides a quality benchmark against which to

compare other techniques” and is “the best software anisotropic texture filtering

algorithm known to date”. Shin et al [71] also argue that EWA “generates the very high

quality images, but requires the intensive computation power and texel values. This

method provides a quality benchmark used when to compare various filtering

techniques”. The EWA technique provides superior image quality to other current

techniques, and hence shows the least artefacts or aliasing. Visually EWA should

compare favourably to any technique considered here, theoretically showing the least

artefacts or aliasing. However, EWA suffers badly in performance compared to less

computationally expensive techniques. Thus, it can be concluded that EWA may be used

as a quality benchmark when considering the success of texture filtering techniques and

for comparison against other techniques. EWA can therefore be held up as an exemplar

of quality for anisotropic techniques.

As previously mentioned, “Anisotropic filtering” describes the current most widely

utilised technique in real-time graphics systems, including games and simulations. At

Daniel Rhodes 136

Chapter 4: Texture Mapping and Aliasing

the time of writing it is used, in slightly differing forms, on both NVIDIA and ATI

hardware. These two companies constitute the vast majority of the graphics card market.

Anisotropic filtering is a much higher performance algorithm than less performance

oriented techniques like EWA, and hence it suffers many more artefacts. It is chosen as

an appropriate comparison algorithm because it is the current de-facto industry standard,

this is despite heavy optimisation often reducing visual quality as discussed previously.

The particular implementation of Anisotropic filtering chosen is that used on NVIDIA's

line of GeForce graphics cards. This is because NVIDIA are the market leaders, hence

NVIDIA's implementation of anisotropic filtering is the most widely utilised at present.

In the case of the Fourier textures technique, it is expected that a slight loss in image

detail will be observed when compared to NVIDIA's overly sharp anisotropic

implementation, but with considerably less aliasing. When comparing to EWA it is

expected that similar levels of detail and aliasing are displayed in the case of lower

resolution images. Although it is expected that EWA will provide the best visual results

overall, particularly at higher resolutions.

The optimum settings for the Fourier technique, given each particular set of test images,

also need to be discovered. For each particular input image this requires ascertaining

which settings of filter width and number of frequencies give the optimum balance

between final image quality against performance. Perfect image quality is defined here

as: a complete lack of artefacts while retaining all of the source textures sharpness.

Therefore the optimum image quality for any given scene is achieved by balancing the

Daniel Rhodes 137

Chapter 4: Texture Mapping and Aliasing

number of on screen artefacts against the level of blurring. In some situations sharpness

is preferential. However in any real time simulation, where motion of the scene is

required, blurring is infinitely preferable to aliasing artefacts. This is because aliasing

artefacts are greatly accentuated by motion and hence increase in significance with the

animated scenes required by most modern games and simulations.

It is expected that the Fourier technique will perform well at the lower resolutions, this

is because fewer frequencies will be required to accurately represent the original image.

This also means that a greater frame rate will be achievable due to the fact that fewer

frequencies will be necessary. It is also expected that the Fourier technique shall

perform better on textures with a narrower concentration of frequencies, as shown in the

histograms earlier, and hence a smaller number of dominant frequencies contributing to

the final image. In these cases it becomes possible to represent the original texture well

with fewer frequencies and may hence allow better performance while still maintaining

acceptable levels of image quality.

With regards to the performance of each algorithm in a real world scenario, one

important factor to consider is memory utilisation. This is because even cutting edge

graphics cards have a limited amount of memory, particularly when coupled with the

usual requirement that games and simulations, and hence the texture filtering techniques

they utilise, need to be made to take into account less capable systems.

Daniel Rhodes 138

Chapter 4: Texture Mapping and Aliasing

4.4.3.2.1 4.4.3.2.1 Theoretical PerformanceTheoretical Performance

here are several important indicators for theoretical performance, the most cited

of which are usually memory requirements and sample counts.T
Memory requirements give an indication of how well a technique will fit into existing

hardware, where memory is at a premium. While sample counts can provide a rough

indicator of processing requirements, with higher sample counts potentially prohibiting

real-time performance.

4.4.3.2.2 4.4.3.2.2 Memory utilisationMemory utilisation

echniques such as EWA and Anisotropic filtering are generally used in

conjunction with standard MIP mapping, this obviously has extra memory

requirements over and above that of regular texturing. Unfortunately the memory

footprint of MIP Maps are not ideal for standard memory management techniques. This

is due to the requirement of MIP map level dimensions being power of twos and each

level being exactly half the size of the previous level, culminating at 1x1. This leads to

an odd number of pixels, which can be awkward in terms of memory management.

T

Looking at the memory requirements of common techniques it is possible to establish

that the Fourier technique compares well against standard MIP mapping.

Daniel Rhodes 139

Chapter 4: Texture Mapping and Aliasing

MIP mapping requires:

mt≈T nT n−1T n−m

where:

● mt = total memory used

● T n = memory required for texture at level of detail n . i.e. texture size =

width×height at n multiplied by the number of bytes per pixel.

So for a 64×64 texture, assuming a floating point texture with 32-bits (4 bytes) per

component in RGBA pixel format:

mt=64×6432×322×21×1×4×4
mt=40961024256641641×4×4
mt=5461×16
mt=87376 Bytes

That means 87376 Bytes are required for MIP Mapping alone. This roughly equates to a

memory requirement of mt≈1.33m o where mo is the memory footprint of the original

texture

Next this is considered alongside the Fourier technique, which is calculated similarly

but must take into account several extra factors:

mt≈T nT n−1T n−mF

where:

Daniel Rhodes 140

Chapter 4: Texture Mapping and Aliasing

● F equals 2×L×S×A .

● L is the number of levels of detail.

● S is the number of sub-levels.

● A equals the number of angles.

A is typically 4, where S and L are dependant on the original texture size:

● L = n1 where T w=2n and T w is the original texture width.

● S = L .

● A is selected as 4 to balance visual quality and performance.

Taking the same 64×64 floating point texture as an example, the Fourier system

requires:

Which still equates to less than two full size textures (i.e. less than two times the size of

the original texture or mt2Tw) to cover all levels including MIP maps and frequency

sets. More accurately the Fourier method requires mt≈1.43m o where mo
43 is the

memory footprint of the original texture. This compares to mt≈1.33m o for standard

43 In the 64x64 texture example this would be 65536 Bytes or 64x64x16

Daniel Rhodes 141

L=7,S=7, A=4.
mt=64×6432×322×21×1×4×42×7×7×4×4×4
mt=40961024256641641×4×4392×4×4
mt=5853×16
mt=93648 Bytes

Chapter 4: Texture Mapping and Aliasing

MIP mapping.

These figures are a little more tricky to calculate for some versions of anisotropic

filtering, as the memory footprint depends on the particular implementation used. RIP-

Mapping for example uses a great deal of texture memory, where as Summed Area

tables and Footprint assembly44 are much more comparable to regular MIP Mapping in

terms of memory footprint.

The NVIDIA implementation of anisotropic filtering requires the same memory

footprint as standard MIP Mapping (mt≈1.33m o), as it builds on the basis of trilinear

filtering. However, NVIDIA's anisotropic filtering requires many more samples, or

texture fetches, than standard MIP Mapping.

The NVIDIA GeForce 6800, on which most of the testing is performed, has a maximum

2D texture size of 4096x4096. This is a common limitation and when combined with

texture memory limits, 256Mb45 on many current cards46, enables the calculation of the

number of textures which can be stored in texture memory at any one time.

Given an original texture size of just 64x64, each MIP Mapped texture will occupy

approximately 87376 bytes; meaning a total of around 3072 64x64 textures will be

available on a 256Mb GeForce 6800 in a typical scene which requires MIP mapping.

44 See section 4.2.8
45 268435456 Bytes
46 The 6800 used for testing is limited to 128Mb

Daniel Rhodes 142

Chapter 4: Texture Mapping and Aliasing

Closer examination of this figure reveals that using larger and larger textures rapidly

decreases the number of possible textures per scene. The addition of more and

increasingly complex techniques such as Normal Mapping only adds to this

requirement. This makes the slight increase in memory footprint an important factor in

analysing the success of the Fourier technique, and at only 1.43 times the size of a

regular texture it compares favourably with many of the other anti-aliasing techniques

available and only suffers a slight increase in memory requirements over the current

industry standard basic MIP mapping technique.

4.4.3.2.3 4.4.3.2.3 Samples and bandwidthSamples and bandwidth

he number of samples, or texture fetches, is an important measure of potential

performance which avoids the difficulties of comparing optimised and un-

optimised techniques as well as the constraints or deficiencies of particular

implementations.

T

Basic texture mapping uses one sample per pixel, or one texture fetch per pixel, which

means that for a 64x64 textured image there will be a total of 4096 samples taken per

frame. This is calculated as follows:

s p=1

st=s p×height×width
st=s p×64×64
st=1×4096
st=4096

Daniel Rhodes 143

Chapter 4: Texture Mapping and Aliasing

where st is the total number of samples required for the image and s p is the number of

samples per pixel.

Standard bilinear filtering utilises 4 samples per pixel, so that equates to 4 texture

samples per pixel or a total of 16384 samples for a 64x64 texture image. So for bilinear

filtering:

s p=4
st=s p×height×width
st=s p×64×64
st=4×4096
st=16384

Trilinear filtering uses an extra four samples per pixel over and above that of bilinear

due to the fact it takes two bilinear samples, so that equates to a total of 32768 samples

in a 64x64 texture image:

s p=8
st=s p×height×width
st=s p×64×64
st=8×4096
st=32768

Both the Fourier technique and the NVIDIA anisotropic technique build on bilinear and/

or trilinear filtering so these sample numbers provide the basis on which both

techniques build.

Daniel Rhodes 144

Chapter 4: Texture Mapping and Aliasing

As discussed previously, NVIDIA's anisotropic technique theoretically builds on

trilinear filtering, with each anisotropic sample equating to one trilinear sample.

Therefore 16x anisotropic filtering means 16 trilinear samples per pixel, this equates to

128 samples per pixel or 524288 samples in a 64x64 texture image:

s p=8×16

st=s p×height×width
st=s p×64×64
st=128×4096
st=524288

Similarly 8x anisotropic filtering requires:

s p=8×8
st=s p×height×width
st=s p×64×64
st=64×4096
st=262144

4x anisotropic filtering requires:

s p=8×4

st=s p×height×width
st=s p×64×64
st=32×4096
st=131072

Daniel Rhodes 145

Chapter 4: Texture Mapping and Aliasing

2x anisotropic filtering requires:

s p=8×2

s2x=s p×height×width
s2x=s p×64×64
s2x=16×4096
s2x=65536

However, the actual number of samples taken by this technique is most likely limited by

optimisations such as brilinear filtering and optimisations based on viewing angle, so

the true number is unlikely to reach these maximum values.

The hardware implementation of the Fourier technique requires two bilinear or trilinear

samples per frequency per pixel. For example, in the case of the bilinear Fourier

technique, if 10 frequencies are used then 20 bilinear samples are required per pixel.

Hence the technique requires a theoretical maximum of 80 samples per pixel. Therefore

when used in conjunction with bilinear filtering, the Fourier technique requires 16

frequencies to match the requirement of NVIDIA's 16x anisotropic filtering at 128

samples per pixel. Thus, if the technique can obtain similar levels of detail within that

range of frequencies then it can be considered a real competitor for anisotropic filtering

in regards to performance.

In the case of trilinear Fourier, 10 frequencies equates to a theoretical maximum of 160

samples per pixel. Hence, when used with trilinear filtering, the Fourier technique

requires just 8 frequencies to match the requirement of NVIDIA's anisotropic filtering at

128 samples per pixel. A fuller list of sample requirements can be found in Table 13 for

Daniel Rhodes 146

Chapter 4: Texture Mapping and Aliasing

comparison.

As with the NVIDIA anisotropic filtering, some optimisations can be made to improve

performance, so the numbers are not necessarily definitive. Obviously more is known

about the implementations of the optimisations in this case. The Fourier technique uses

the angle of the surface to limit the number of frequencies used, as certain angles

require much less added detail that others, so the true number of samples per pixel

varies based on angle and is therefore scene dependant. The figures given in Table 13

represent the absolute maximum number of samples in all cases.

Daniel Rhodes 147

Chapter 4: Texture Mapping and Aliasing

Frequencies Bilinear
(Samples per pixel)

Trilinear
(Samples per pixel)

0 0 0

10 80 160

20 160 320

30 240 480

40 320 640

50 400 800

60 480 960

70 560 1120

80 650 1280

90 720 1440

100 800 1600

110 880 1760

120 960 1920

130 1040 2080

140 1120 2240

150 1200 2400

160 1280 2560

170 1360 2720

180 1440 2880

190 1520 3040

200 1600 3200

210 1680 3360

220 1760 3520

230 1840 3680

240 1920 3840

250 2000 4000

Table 13: Fourier texture filtering sample requirements

Figure 59 and Figure 60 show graphical representations of Table 13, with the results for

NVIDIA's anisotropic filtering superimposed over the top. It can be seen from Figure 60

particularly that the maximum 16x setting for NVIDIA filtering is roughly equivalent to

16 Fourier frequencies in the current system.

Daniel Rhodes 148

Chapter 4: Texture Mapping and Aliasing

It should be noted that the number of samples taken by the presented implementations

of the Fourier technique is artificially increased by the unorthodox methods used to

store and retrieve the texture. With only slight adjustments to OpenGL or any other 3D

API, this number can easily be halved. The basic problem lies with the fact that the

Fourier techniques require the retrieval of 8 values per pixel, that is twice the usual four

values retrieved per pixel. This is an issue because the standard texturing pipeline is set

up to cope with only the four standard RGBA values. A slight alteration to the API's or

hardware could facilitate the halving of the number of samples required and allow one

texture structure per Fourier texture. Without these adjustments the Fourier techniques

therefore require two texture fetches from two separate structures. Although, even with

Daniel Rhodes 149

Figure 59: Samples - full graph

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0
F r e q u e n c i e s

S
a
m

p
le

s B i l i n e a r F o u r i e r

T r i l i n e a r F o u r i e r

A n i s o t r o p i c

Chapter 4: Texture Mapping and Aliasing

these adjustments the Fourier technique would still require twice the bandwidth of

standard MIP Mapping.

This means that, if properly integrated into a 3D API, the Fourier techniques would

provide a much more viable alternative to the NVIDIA anisotropic filtering on a

theoretical performance basis. However, to properly compete, it must also show

comparable or better image quality, as well as similar or lower aliasing levels for

comparable sample counts. Taking into account the compromises imposed by current

API's this point comes at 32 frequencies when paired with bilinear filtering and at 16

frequencies when paired with trilinear filtering. This is double the number possible for

Daniel Rhodes 150

Figure 60: Samples - zoomed

1 6 x

8 x

4 x
2 x

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 1 0 2 0 3 0

F r e q u e n c i e s

S
a
m

p
le

s

B i l i n e a r F o u r i e r

T r i l i n e a r F o u r i e r

A n i s o t r o p i c

Chapter 4: Texture Mapping and Aliasing

comparable sample numbers in the current implementation.

4.4.3.2.4 4.4.3.2.4 Observed PerformanceObserved Performance

his section investigates the observed performance of each algorithm on the test

system. It is expected that the heavily optimised and hardware accelerated

NVIDIA anisotropic filtering shall provide many times the performance of the Fourier

techniques, which should in-turn provide similar performance advantages over the

computationally expensive EWA.

T

In order to accurately analyse the performance of each technique, the frame rates

achieved must be examined while varying conditions such as resolution and input

texture. It is expected that increases in texture resolution shall adversely affect the

performance of all the techniques, as they all utilise per-pixel operations. Neither the

Fourier or EWA techniques take any account of the content of the textures at runtime

and so should, within the realms of experimental error, provide identical results for each

texture. It is assumed that the same shall be true of the NVIDIA anisotropic technique.

However, as little is known about the exact implementation of the NVIDIA technique, it

is conceivable that there are optimisations in place which take into account texture

content. One possible optimisation here would be to take samples of the texture at load

time and to analyse the differences in contrast between the texels. This is done in order

to determine possible pattern variations within the texture and hence the

minimum/maximum level of anisotropy that may be necessary.

Daniel Rhodes 151

Chapter 4: Texture Mapping and Aliasing

Perhaps most importantly, the effect of varying the number of samples needs to be

ascertained for the Fourier and NVIDIA Anisotropic techniques. Usually it can be

expected that an increase in the number of samples taken will have a direct effect on

frame rates, or more precisely a doubling of the number of samples will lead to a

halving of the frame rate. However, both techniques apply some optimisations. It is

known that the Fourier techniques use angle based optimisation to reduce the number of

samples (frequencies) required, so it is expected that this shall be reflected in the

performance graphs. Perhaps providing a similar curve to what could be expected from

an un-optimised version, with the curve raised along the y axis by the optimisation.

As previously discussed, the input texture should make no difference to the performance

of the techniques. This theory is examined here, also the affect of extra samples on each

technique is investigated. Figure 6147 and Figure 62 show graphical representations of

the test data for the Fourier and NVIDIA Anisotropic techniques from the 64x64 brick

input textures. Unfortunately EWA proved too slow to obtain any meaningful

performance data, showing a consistent 2 frames per second on the test hardware

regardless of the software settings.

Figure 61 shows that increasing the number of samples (hence frequencies) does indeed

have a direct effect on the frame rates. A fairly steep fall off is observed at lower

numbers of frequencies easing off towards the top end. This shows around a 50% initial

performance hit per 10 frequencies which drops to less than 0.01% per 10 frequencies at

the top end. This illustrates that optimisations are successfully restricting the number of

47 In Figure 61 the abbreviations BF and TF stand for Bilinear Fourier and Trilinear Fourier respectively.

Daniel Rhodes 152

Chapter 4: Texture Mapping and Aliasing

extra frequencies used at the top end of the range.

It can also be shown from Figure 61 that, as hypothesised, the input texture makes no

difference to performance. Apart from a few small fluctuations, the performance for

each texture is identical. These fluctuations can easily be explained by experimental

error given the nature of the experiment and the scale of the differences observed.

What can be observed from Figure 61 and Figure 62 is that the NVIDIA Anisotropic

technique, when run unconstrained, easily outpaces the Fourier technique. On

examination of the data it can be shown that the Fourier technique shows between 1%

and 15% of the performance of the NVIDIA anisotropic technique and that EWA offers

between 0.13% and 0.15% of the performance of the NVIDIA anisotropic.

Daniel Rhodes 153

Figure 61: Fourier 64x64 Performance Graph

Chapter 4: Texture Mapping and Aliasing

However, it should be noted that there is another factor that needs to be considered in

terms of actual rather than theoretical performance, that is the matter of v-sync 48. V-sync

is a common graphics driver setting, which is often activated by default. This is because

it prevents tearing artefacts in the on screen images, caused by timing issues. Activation

of v-sync limits the maximum frame rate to that of the monitors synchronisation rate.

This would mean that both the NVIDIA anisotropic and Fourier techniques would be

limited to the refresh rate of the monitor. For example, if the refresh rate were 85Hz

then this translates to a performance cap of 85 frames per second. Although for these

purposes it is better to look at the unlimited performance of each technique, in order to

identify feasibility for real time applications by examining the maximum frame rates.

While Figure 62 shows much more variation in frame rates between textures than

Figure 61 the differences still only represent less than 2% of the maximum frame rate.

48 Vertical Synchronisation, which is the synchronisation of the frame rate with the monitors vertical
refresh rate

Daniel Rhodes 154

Figure 62: Anisotropic 64x64 Performance Graph

Chapter 4: Texture Mapping and Aliasing

Therefore these differences are most likely within the realm of experimental error rather

than evidence of any texture content optimisations, although this should not be ruled

out.

4.4.3.2.4.1 4.4.3.2.4.1 Brick WallBrick Wall

aving firmly established that the texture content makes no difference to any of

the techniques performance, the next step is to concentrate on one of the

textures, to further investigate performance levels.

H

As can been seen in Figure 63, when using the Bilinear technique, the maximum

difference between frame rates for the different texture sizes is less than 8% of the

maximum frame rate achieved with the 64x64 texture. However, this difference is using

Daniel Rhodes 155

Figure 63: Brick Wall - bilinear performance

Chapter 4: Texture Mapping and Aliasing

the same number of frequencies for each size of texture. As already established, the

number of frequencies required to accurately represent an image increases dramatically

as texture size increases. This is due to the percentage of frequencies required remaining

around the same for each size increase.

Figure 64 demonstrates a similar pattern for Trilinear filtering with the maximum

difference between frame rates being again around 8% of the maximum frame rate.

Both Figure 63 and Figure 64 show a similar drop off in performance. The graphs

demonstrate that the Bilinear based Fourier performs around 5-6% better than the

Trilinear based Fourier technique. While this is not a huge performance difference,

trilinear filtering is perhaps an unnecessary extra computational expense in this case as

the Fourier process helps reduce the visibility of the MIP map layer transitions that

trilinear filtering is usually tasked with solving.

Daniel Rhodes 156

Chapter 4: Texture Mapping and Aliasing

Figures 65 and 66 compare the performance of the NVIDIA technique on two different

platforms, the NVIDIA 6800 and newer 8600 graphics cards which became available

late into the testing process. What can be seen from these graphs is that the performance

Daniel Rhodes 157

Figure 64: Brick Wall - Trilinear performance

Figure 65: Brick Wall – NVIDIA 6800 performance

Chapter 4: Texture Mapping and Aliasing

of anisotropic filtering has actually decreased despite a significant increase in shader

performance between the hardware generations.

This may be construed as the signalling of a shift of focus by NVIDIA away from fixed

function techniques such as this to the more general shaders. With many old fixed

function techniques now being implemented exclusively in shaders this is unsurprising,

but it does demonstrate the differences in performance between shader programs and

fixed function techniques. These performance graphs also show a shift of optimisation

for the technique, with the 6800 performing best at a resolution of 64x64 while the 8600

version of the same technique has seemingly been optimised for larger textures.

4.4.3.2.5 4.4.3.2.5 Visual ResultsVisual Results

aving established the performance of each technique the next task is to examine

the visual output of each.H
Daniel Rhodes 158

Figure 66: Brick Wall – NVIDIA 8600 performance

Chapter 4: Texture Mapping and Aliasing

4.4.3.2.5.1 4.4.3.2.5.1 Brick WallBrick Wall

he first texture examined, the brick wall pattern, is one example of the kind of

textures often found in video games. Scenes involving brick walls are extremely

popular in video games and are more often than not required to be viewed from many

different angles both sharp and shallow, making this brick texture a prime candidate for

testing the Fourier technique.

T

Taking a closer look at the exact texture chosen. Figure 67 a) shows the original brick

wall texture for comparative purposes, and Figure 67 b) shows a Fourier analysis of the

texture. The Fourier space representation indicates that the majority of the frequencies

which make up the image are around 50% below maximum frequency, along with fairly

low frequencies along x and y although they are slightly higher in the y direction.

Daniel Rhodes 159

Chapter 4: Texture Mapping and Aliasing

Figures 68 - 71 display the visual results of testing the 64x64 brick texture at the

optimum number of frequencies. In this case it is determined that 74 frequencies

provides a comparative level of quality with the other techniques. Comparing the

generated images to the optical system in Figure 72 it can be seen that the NVIDIA

technique is overly sharp for the horizontal mortar lines, this results in motion aliasing

which was not observed with the other techniques.

Daniel Rhodes 160

Figure 67: Brick Wall

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

64x64

It is also noted that no technique retains the detail of the vertical mortar lines as shown

in the optical image. In this case EWA shows an over blurred image, this can be

lessened by adjustments to the technique but at the expense of aliasing. However, this is

expected as the EWA implementation is optimised for larger textures.

The next texture resolution examined is 128x128. Figures 73 - 76 show the visual

results for this test. At this resolution the Fourier techniques cannot compete on detail

retention even with a full 256 frequencies. However, it should be noted that neither

Fourier technique show any signs of the aliasing which plagues the NVIDIA anisotropic

filtering. As expected EWA retains much more detail at this resolution, although it still

lacks sharpness on the front face.

Daniel Rhodes 161

Figure 68:
Bilinear

Figure 69:
Trilinear

Figure 70:
NVIDIA

Figure 71: EWA

Figure 72:
Optical

Chapter 4: Texture Mapping and Aliasing

128x128

At a resolution of 256x256 the Fourier techniques again suffer with detail retention

compared to the other techniques, this can be seen in Figures 78 - 81.

256x256

The EWA technique is beginning to show its true abilities at this resolution,

demonstrating slightly greater detail retention than the NVIDIA technique at distance

with significantly less aliasing.

Daniel Rhodes 162

Figure 73:
Bilinear

Figure 74:
Trilinear

Figure 75:
NVIDIA

Figure 76: EWA

Figure 77:
Optical

Figure 78:
Bilinear

Figure 79:
Trilinear

Figure 80:
NVIDIA

Figure 81: EWA

Figure 82:
Optical

Chapter 4: Texture Mapping and Aliasing

512x512

Figures 83 and 84 demonstrate an almost complete loss of texture detail for the Fourier

techniques at a resolution of 512x512. EWA (Figure 86) again adds more detail over the

previous lower resolution, and now shows a noticeable improvement over the NVIDIA

technique (Figure 85), particularly towards the top of the slope.

The final resolution tested is 1024x1024. Again the Fourier techniques (Figures 88 and

89) show a lack of detail retention. As expected EWA displays slightly more detail at

this resolution, showing by far the best detail retention of any technique examined.

1024x1024

At this point it is noted that the NVIDIA technique provides visually indistinguishable

Daniel Rhodes 163

Figure 83:
Bilinear

Figure 84:
Trilinear

Figure 85:
NVIDIA

Figure 86: EWA

Figure 87:
Optical

Figure 88:
Bilinear

Figure 89:
Trilinear

Figure 90:
NVIDIA

Figure 91: EWA

Figure 92:
Optical

Chapter 4: Texture Mapping and Aliasing

results for all resolutions. This is most likely an indicator that the NVIDIA technique

performs resolution independent operations which remain the same regardless of texture

size and also explains the poorer performance for higher resolution textures on the 6800

test platform. EWA shows noticeable improvements in detail retention as the texture

resolution increases. EWA's increasing detail is in direct opposition to the Fourier

techniques which lose detail as texture resolution increases, this is due to the 256 texture

limit imposed by the hardware.

Despite the 256 frequencies limitation and given the results at a resolution of 64x64, it

is possible to estimate the number of frequencies this texture would require at higher

resolution. These estimates are presented below in Table 14.

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 74 1.81%

128 128 16384 >256 >1.56%

Brick 256 256 65536 983-1311 1.5%-2.0%

512 512 262144 3932-5242 1.5%-2.0%

1024 1024 1048576 15729-20972 1.5%-2.0%

Table 14: Frequency requirements for the brick wall texture

Table 14 displays the frequency requirements for each texture resolution, where red

values are estimates based on previous results. These estimates are necessary as the test

hardware does not allow greater than 256 frequencies, therefore the exact values cannot

be obtained experimentally. As can be seen, the requirement of 74 frequencies for

competitive representation at a resolution of 64x64 equates to 1.81% of the total

frequencies. It is also known that at a resolution of 128x128, more than 1.56% of the

Daniel Rhodes 164

Chapter 4: Texture Mapping and Aliasing

total frequencies are required for an accurate representation of the original image. This

allows us to estimate the remaining values as they are likely to lie within 1.5% and 2%

of the total number of frequencies for each texture size. These estimates are reasonable,

given it is expected that the percentage of frequencies required should remain fairly

constant regardless of texture size.

4.4.3.2.5.2 4.4.3.2.5.2 FenceFence

he next texture examined is another example of the kind of textures which are

often found in video games; a fence pattern. Scenes involving fences, similarly

to brick walls, are popular in video games. They are often required to be viewed from

many different angles both sharp and shallow, making the fence texture a prime

candidate for testing the Fourier technique.

T

Figure 93 takes a closer look at the exact texture chosen. Figure 93 a) shows the original

fence texture for comparative purposes, and Figure 93 b) shows a Fourier analysis of

that same fence texture. The Fourier space representation shows a strong vertical

frequency component, representing the horizontal fence slats and wood grain. Some

more random patterns are also visible, which are likely to be representative of the wood

grain, but these are still fairly well aligned with the general layout of frequencies.

Daniel Rhodes 165

Chapter 4: Texture Mapping and Aliasing

This means that the fence texture should provide good results for a lower number of

frequencies than many of the other patterns, although this will depend on texture

orientation. The fine detail of the wood grain is likely only to be reintroduced by the

technique at much higher frequency levels, well beyond the realms of acceptable

performance.

Figures 94 - 97 show the visual results for a resolution of 64x64. In this case, all

techniques provide almost indistinguishable levels of detail on the angled surface. The

Fourier techniques achieve this level of detail at a frequency level of 74. The NVIDIA

technique is the only tested algorithm which displays aliasing, whereas both the EWA

and Fourier techniques show strong anti-aliasing properties.

Daniel Rhodes 166

Figure 93: fence

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

64x64

The same tests were performed at a resolution of 128x128 (Figures 99 - 102) and show

that the Fourier techniques loses much of the distant detail, even with the full 256

frequencies.

128x128

It must, therefore, be concluded that the fence texture requires more than 256

frequencies for accurate representation at this resolution and above. There is no way of

discovering the exact number of frequencies required, hence estimates are presented in

Table 15. A resolution of 64x64 requires 1.81% of the total frequencies for an accurate

representation and a resolution of 128x128 requires >1.56% of the total frequencies.

Therefore, it can be estimated that the other resolutions shall require somewhere in the

Daniel Rhodes 167

Figure 99:
Bilinear

Figure 100:
Trilinear

Figure 101:
NVIDIA

Figure 102:
EWA

Figure 103:
Optical

Figure 94:
Bilinear

Figure 95:
Trilinear

Figure 96:
NVIDIA

Figure 97: EWA

Figure 98:
Optical

Chapter 4: Texture Mapping and Aliasing

region of 1.5%-2.0% of the total frequencies available for that resolution.

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 74 1.81%

128 128 16384 >256 >1.56%

Fence 256 256 65536 983-1311 1.5%-2.0%

512 512 262144 3932-5242 1.5%-2.0%

1024 1024 1048576 15729-20972 1.5%-2.0%

Table 15: Frequency requirements for the fence texture

4.4.3.2.5.3 4.4.3.2.5.3 FlowersFlowers

he next texture examined is one example of the kind of textures included to

thoroughly test the Fourier technique, a flower pattern. The wide scattering of

frequencies shown in Figure 104 b) should prove a challenge for the Fourier technique,

which relies on a few dominant frequencies being able to sufficiently represent an

image.

T

Figure 104 allows closer inspection of the flowers texture. Figure 104 a) shows the

original texture for comparative purposes, and Figure 104 b) shows a Fourier analysis of

the texture. The Fourier space representation demonstrates that the majority of the

dominant frequencies appear to be around 50% below the maximum frequency. These

frequencies are scattered in a non-uniform pattern which may prove difficult for the

Fourier technique.

Daniel Rhodes 168

Chapter 4: Texture Mapping and Aliasing

As expected, Figures 105 and 106 show that the Fourier techniques struggle with this

kind of texture. This is due to the 256 frequencies limit the hardware imposes. The

differences in detail retention between the Fourier and NVIDIA techniques demonstrate

that an insufficient number of frequencies can be used in the current hardware system,

to accurately represent this texture. It also demonstrates that, due to the scale of the

difference in detail, that a relatively small number of extra frequencies could provide

more competitive results.

Estimating the number of frequencies required is difficult in this case, as even the

lowest resolution tests did not provide enough detail to record results on which to base

these estimations. Table 16 illustrates known frequency requirements for this texture.

Daniel Rhodes 169

Figure 104: Flowers 64x64

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

64x64

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 >256 >6.25%

128 128 16384 >256 >6.25%

Flowers 256 256 65536 >256 >6.25%

512 512 262144 >256 >6.25%

1024 1024 1048576 >256 >6.25%

Table 16: Frequency requirements for the flowers texture

4.4.3.2.5.4 4.4.3.2.5.4 GrassGrass

he grass pattern is one example of the kind of textures which are often found in

video games. Taking a closer look at the exact texture chosen. Figure 110 a)

shows the original grass texture for comparative purposes, and Figure 110 b) shows a

Fourier analysis of that same grass texture.

T

The Fourier space representation illustrates that, in this pattern the majority of the

frequencies making up the image form a random pattern. This will be very difficult for

the Fourier technique to reproduce accurately. The fine detail in the source image will

also prove problematic for the other techniques.

Daniel Rhodes 170

Figure 105:
Bilinear

Figure 106:
Trilinear

Figure 107:
NVIDIA

Figure 108:
EWA

Figure 109:
Optical

Chapter 4: Texture Mapping and Aliasing

Figures 111 - 114 show that the Fourier techniques cannot quite match the detail of the

NVIDIA technique for this texture. This could be rectified by raising the 256

frequencies limit imposed by the hardware, particularly as the differences are minimal

in this case. Table 17 demonstrates that the frequency requirements for this texture are

at least 6.25% of the total frequencies available.

64x64

Daniel Rhodes 171

Figure 111:
Bilinear

Figure 112:
Trilinear

Figure 113:
NVIDIA

Figure 114: EWA

Figure 115:
Optical

Figure 110: Grass

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 >256 >6.25%

128 128 16384 >256 >6.25%

Grass 256 256 65536 >256 >6.25%

512 512 262144 >256 >6.25%

1024 1024 1048576 >256 >6.25%

Table 17: Frequency requirements for the grass texture

4.4.3.2.5.5 4.4.3.2.5.5 HexHex

he next texture examined is another example of the kind of textures included to

thoroughly test the Fourier technique; a Hexagon pattern. The fabric elements of

the pattern are also often seen in games. The lack of any particularly dominant

frequencies as shown by Figure 116 b) should prove a challenge for the Fourier

technique, which relies on a few dominant frequencies being able to sufficiently

represent an image.

T

Taking a closer look at the exact texture chosen: Figure 116 a) shows the original Hex

texture for comparative purposes, and Figure 116 b) shows a Fourier analysis of that

same Hex texture. The Fourier space representation illustrates that the majority of the

dominant frequencies are around 25% below maximum frequency, but the these

frequencies are scattered in a non-uniform pattern which may prove difficult for the

Fourier technique.

Daniel Rhodes 172

Chapter 4: Texture Mapping and Aliasing

The test results illustrated in Figures 117 - 120 show an interesting loss of detail by the

NVIDIA technique at the top of the image. This could be an indicator of the NIVIDA

techniques optimisations, cutting the workload by lessening the processing for smaller

MIP map levels. The NVIDIA technique does however still show better detail retention

than the other techniques for this texture size.

64x64

Daniel Rhodes 173

Figure 117:
Bilinear

Figure 118:
Trilinear

Figure 119:
NVIDIA

Figure 120:
EWA

Figure 121:
Optical

Figure 116: Hex 64x64

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

This texture requires more than the 256 frequencies the hardware is restricted to. As

such Table 18 shows only the known frequency requirements of this texture.

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 >256 >6.25%

128 128 16384 >256 >6.25%

Hex 256 256 65536 >256 >6.25%

512 512 262144 >256 >6.25%

1024 1024 1048576 >256 >6.25%

Table 18: Frequency requirements for the hex texture

4.4.3.2.5.6 4.4.3.2.5.6 MetalMetal

he metal texture shown in Figure 122 is the next texture to be analysed. This

texture is another example of the type of textures that are commonly found in

video games.

T

For comparative purposes the original texture is shown in Figure 122 a), while Figure

122 b) shows a Fourier analysis of that same metal texture. The Fourier space

representation shows that, similarly to the grass texture, there is a wide spread of

frequencies. Although in this case there are signs of some more dominant frequencies,

which should enable the Fourier techniques to cope slightly better with this texture than

with the grass.

Daniel Rhodes 174

Chapter 4: Texture Mapping and Aliasing

64x64

None of the techniques cope particularly well with the detail of this texture. The

NVIDIA technique again provides the most detail in the test images. This illustrates that

more than 256 frequencies are required for the Fourier technique to match this level of

detail, as shown by Table 19.

Daniel Rhodes 175

Figure 123:
Bilinear

Figure 124:
Trilinear

Figure 125:
NVIDIA

Figure 126:
EWA

Figure 127:
Optical

Figure 122: Metal

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 >256 >6.25%

128 128 16384 >256 >6.25%

Hex 256 256 65536 >256 >6.25%

512 512 262144 >256 >6.25%

1024 1024 1048576 >256 >6.25%

Table 19: Frequency requirements for the metal texture

4.4.3.2.5.7 4.4.3.2.5.7 StripesStripes

he next texture investigated is another example of the kind of textures included

to thoroughly test the Fourier technique, a Stripes pattern. The narrow band of

frequencies shown in Figure 128 should prove ideal for the Fourier technique, which

relies on a few dominant frequencies to enable an accurate representation of the source

image.

T

Figure 128 takes a closer look at the exact texture chosen. Figure 128 a) shows the

original Stripes texture for comparative purposes, and Figure 128 b) shows a Fourier

analysis of the texture. The Fourier space representation illustrates that the majority of

the dominant frequencies are on the horizontal plain in Fourier space, this should prove

advantageous to the Fourier techniques, although the texture orientation may determine

the extent of any benefits gained. The single plain of frequencies may prove a

disadvantage to the Fourier technique for orientations where the dominant frequencies

are at odds with the texture orientation.

Daniel Rhodes 176

Chapter 4: Texture Mapping and Aliasing

This texture displays good results under the Fourier techniques, this is demonstrated by

Figures 129 - 132. Figure 131 shows a clearly visible level of detail transition in the

case of the NVIDIA technique, this is likely caused by an inappropriate optimisation

choice creating an overly sharp foreground. All techniques show some degree of motion

aliasing on this texture, this is minimal with the EWA and Fourier techniques. The

NVIDIA technique however suffers from severe aliasing.

Daniel Rhodes 177

Figure 128: Vertical Stripes 64x64

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

64x64

At a resolution of 128x128 the Fourier technique begins to struggle under the

restrictions imposed by the test hardware. Figures 134 and 135 illustrate the need for

more frequencies than the 256 frequency restriction allows.

128x128

Table 20 shows the frequency requirements for this texture. Only 20 frequencies are

required for a reasonable image quality at a resolution of 64x64. This equates to 160

samples in the case of bilinear filtering. While this is still more than the 128 samples

required by the NVIDIA technique, the lack of aliasing under test conditions and

relatively small difference in sample requirements makes this a desirable trade off. This

is particularly true when the hardware restrictions artificially doubling the sample count

Daniel Rhodes 178

Figure 129:
Bilinear

Figure 130:
Trilinear

Figure 131:
NVIDIA

Figure 132:
EWA

Figure 134:
Bilinear

Figure 135:
Trilinear

Figure 136:
NVIDIA

Figure 137:
EWA

Figure 138:
Optical

Figure 133:
Optical

Chapter 4: Texture Mapping and Aliasing

are taken into account.

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 20 0.49%

128 128 16384 >256 >1.56%

Stripes 256 256 65536 321 - 1022 0.49% - 1.56%

512 512 262144 1285 - 4089 0.49% - 1.56%

1024 1024 1048576 5138 - 16358 0.49% - 1.56%

Table 20: Frequency requirements for the stripes texture

4.4.3.2.5.8 4.4.3.2.5.8 WallWall

he stone wall pattern is another example of the type of texture that is extremely

popular in video games.T
Figure 139 a) shows the original stone texture for comparative purposes, and Figure 139

b) shows a Fourier analysis of that same stone texture. This texture shows an interesting

dominance of frequencies along the diagonals in Fourier space. This illustrates that

there is a dominance of diagonal frequencies. This is despite the uniform appearance

which may be expected by examining the pattern in image space, due to the stones all

being multi-sided and non-uniform. The lack of any particularly dominant frequencies

may cause issues with the Fourier method at lower numbers of frequencies.

Daniel Rhodes 179

Chapter 4: Texture Mapping and Aliasing

Figures 140 - 143 displays the results for this texture at a resolution of 64x64. The

Fourier techniques display the need for a slightly higher level of frequencies that the

hardware allows. However, the Fourier techniques do come close to matching the image

detail of the NVIDIA technique. The NVIDIA technique itself is overly sharp, this

lessens the actual difference between it and the Fourier techniques, and also results in

aliasing.

Daniel Rhodes 180

Figure 139: stone

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

64x64

The frequency requirement estimates for this texture are shown in Table 21.

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 >256 >6.25%

128 128 16384 >256 >6.25%

Wall 256 256 65536 >256 >6.25%

512 512 262144 >256 >6.25%

1024 1024 1048576 >256 >6.25%

Table 21: Frequency requirements for the wall texture

4.4.3.2.5.9 4.4.3.2.5.9 TextText

he next texture examined is another example of the kind of textures often used

for testing texture filtering algorithms, a text pattern. This is because the fine

detail of text is very difficult to reproduce effectively in 3D computer graphics.

T

Taking a closer look at this texture: Figure 145 a) provides the original Text texture for

comparative purposes, and Figure 145 b) gives a Fourier analysis of the texture. The

Fourier space representation illustrates that, as you would expect with text, there are no

Daniel Rhodes 181

Figure 140:
Bilinear

Figure 141:
Trilinear

Figure 142:
NVIDIA

Figure 143:
EWA

Figure 144:
Optical

Chapter 4: Texture Mapping and Aliasing

real dominant frequencies or patterns within the image. Text is a widely known problem

for anti-aliasing techniques and proves the downfall of many otherwise promising

techniques. Hence, this may be the biggest test of the Fourier method.

As predicted all of the techniques struggle with the text texture. At this resolution the

NVIDIA technique shows slightly greater detail than the Fourier techniques, although

this could easily be rectified by the removal of the 256 frequency hardware limitation.

The NVIDIA technique again displays severe aliasing, which is absent from the other

techniques under test conditions.

Daniel Rhodes 182

Figure 145: Text

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

64x64

The estimates of frequency requirements for this texture are shown in Table 22.

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 >256 >6.25%

128 128 16384 >256 >6.25%

Text 256 256 65536 >256 >6.25%

512 512 262144 >256 >6.25%

1024 1024 1048576 >256 >6.25%

Table 22: Frequency requirements for the text texture

4.4.3.2.5.10 4.4.3.2.5.10 WaveWave

he wide scattering of frequencies provided by this texture, and illustrated in

Figure 151, should prove a challenge for the Fourier technique.T
Similarly to some of the other textures tested, the Fourier technique shows the

requirement of a greater number of frequencies than the hardware allows (Figures 152

and 153). This makes comparisons difficult, however the complete lack of aliasing is

ample compensation for the slight loss of image detail when compared to the NVIDIA

Daniel Rhodes 183

Figure 146:
Bilinear

Figure 147:
Trilinear

Figure 148:
NVIDIA

Figure 149:
EWA

Figure 150:
Optical

Chapter 4: Texture Mapping and Aliasing

technique (Figure 154).

64x64

Table 23 displays the estimates of frequency requirements for this texture.

Daniel Rhodes 184

Figure 152:
Bilinear

Figure 153:
Trilinear

Figure 154:
NVIDIA

Figure 155:
EWA

Figure 156:
Optical

Figure 151: Wave 64x64

0 64

a) Image Space

-32 0 32

b) Fourier Space

Chapter 4: Texture Mapping and Aliasing

Texture Height Width Texels Frequencies % of total frequencies

64 64 4096 >256 >6.25%

128 128 16384 >256 >6.25%

Wave 256 256 65536 >256 >6.25%

512 512 262144 >256 >6.25%

1024 1024 1048576 >256 >6.25%

Table 23: Frequency requirements for the wave texture

4.5 4.5 ConclusionsConclusions

he Fourier techniques show between 1% and 15% of the performance of the

fixed function NVIDIA anisotropic filtering on the 6800 platform, and EWA

shows between 0.13% and 0.15% the performance of the NVIDIA technique. Upon

initial inspection this may appear like a large difference. However, it must be

remembered that the NVIDIA technique is fully hardware optimised. As such, sample

counts and texture memory bandwidth usage make a much fairer comparison. Although,

it should be noted that the later tests carried out on the 8600 platform show a drastic

decrease in this gap. It can therefore be theorised that, even without this optimisation

being applied to the Fourier techniques, hardware is progressing at a pace that will

allow these techniques to run at comparable speeds within a few generations.

T

As illustrated by the results from the 8600 tests49 this performance gap shall decrease

with each GPU iteration, as shaders are optimised and fixed functionality is gradually

reduced. It must also be remembered that both the Fourier and the EWA

implementations in these tests are simply a proof of concept and have not been

49 Section 4.4.3.2.4

Daniel Rhodes 185

Chapter 4: Texture Mapping and Aliasing

optimised and refined in the same way that the NVIDIA technique has.

With subtle changes to existing API's and some work on code optimisation, the

performance of both EWA and the Fourier techniques could be improved significantly.

This is a particularly important point because, as illustrated by the performance section,

the NVIDIA anisotropic technique has already peaked in terms of optimisation. This

indicates that any future performance improvements shall be linked almost totally to

hardware progression or compromises in quality.

When comparing performance between these techniques it must also be noted that the

NVIDIA anisotropic technique is known to use optimised versions of trilinear filtering

whereas the other trilinear based techniques examined use full trilinear filtering. It can

be deduced therefore that some of the increased sharpness demonstrated by the NVIDIA

technique is provided by this optimisation, along with a little extra performance. The

presence of these optimisations also explains the visible layer transitions on some

textures as well as some of the aliasing issues suffered by the NVIDIA technique.

Given the continually increasing performance of shaders, optimised versions of the

Fourier techniques discussed here could be viable for real-time use within the next few

hardware iterations. EWA in real-time is likely to be only a few generations behind.

However, neither techniques are currently suitable for real-time without optimisations to

the shader code and API's.

Daniel Rhodes 186

Chapter 4: Texture Mapping and Aliasing

As the test results indicate, each technique has advantages and drawbacks. The main

advantage of the Fourier technique is the ability to use significantly lower texture

resolutions. The Fourier techniques could therefore be used as a means of reducing

overall texture size within an application, and therefore significantly reducing texture

bandwidth requirements, by providing smaller textures with more detail than would

otherwise be possible.

The Fourier techniques achieve similar quality results at low resolutions to higher

resolution source textures with other techniques, without introducing aliasing. Figures

157 - 160 demonstrate that, by using a suitable number of frequencies, the Fourier

techniques can match anisotropic filtering for quality. This is done using only a 64x64

original texture, compared to 1024x1024 for the NVIDIA technique. Perhaps the most

important observation is that the Fourier techniques do this with no recorded aliasing

under test conditions, on all but the stripes texture. The stripes texture did however

cause issues with all the techniques examined. The NVIDIA technique displayed some

aliasing on all techniques, which is in many cases severe particularly in the case of the

stripes texture.

The reduction in texture sizes possible with the Fourier technique would be

advantageous for systems where memory sizes are limited, where low level caching is

available or where memory footprint is an issue. Alternatively the technique could be

reserved for use only on lower MIP map levels where it is most effective, while other

techniques better suited to higher resolutions are used for the larger levels.

Daniel Rhodes 187

Chapter 4: Texture Mapping and Aliasing

Another important observation is the differences between the bilinear and trilinear

versions of the Fourier technique demonstrated by the tests. The addition of trilinear

filtering removes a slight degree of sharpness in all cases. The bilinear version does not

suffer from the usual visible MIP map level transitions, these have been suppressed by

the technique in the same manner as the aliasing. It can be concluded therefore that the

addition of the Fourier technique to a scene removes the need to perform trilinear

filtering to hide level of detail transitions. This will provide sharper results and save

many samples per cycle, as illustrated by Table 13.

Taking the stripes texture as an example: the NVIDIA anisotropic technique requires

128 samples per pixel. The Fourier technique with bilinear filtering requires 20

frequencies or 160 samples. This indicates that the NVIDIA technique should provide

better performance, however this does not take into account the hardware and API

limitations which cause a doubling of the sample count for the Fourier techniques. If

these could be worked around, perhaps by the provision of customisable texture fetch

routines or the ability to increase the number of components per texel, then this sample

count could be halved. In the example above, this would mean a new sample count of

Daniel Rhodes 188

Figure 157:
Bilinear 64x64

Figure 158:
Trilinear 64x64

Figure 159:
NVIDIA

1024x1024

Figure 160:
EWA 1024x1024

Chapter 4: Texture Mapping and Aliasing

80, which is a significant improvement over the 128 samples required by the NVIDIA

technique. Although this does still leave the extra bandwidth requirements of the Fourier

technique, these are negated by the ability to greatly reduce texture sizes.

The current hardware imposed limitations, particularly on the number of frequencies,

indicates that the development of hybrid methods may be preferable in the short term.

These hybrid methods could intelligently choose the appropriate filtering method based

on texture content and angle.

While EWA represents the ultimate eventual aim for any games or hardware company

looking to minimise aliasing and maximise texture quality, the Fourier techniques

presented here when used in conjunction with existing techniques could prove an

effective real-time solution. Given the kinds of optimisations already in use within these

techniques a hybrid method which combines the sharpness of the NVIDIA techniques

images with the lack of aliasing shown by the Fourier technique could provide a

noticeable improvement over current techniques for performance, memory footprint and

image quality.

One drawback of the Fourier techniques is the large amount of pre-processing required

to generate the Fourier sets. This is not deemed to be a major failing of the technique as

look-up tables and similar techniques, which also require heavy pre-processing of data,

are commonly used and this type of work is easily done in batch.

Daniel Rhodes 189

Chapter 5: Bump Mapping

Chapter 5: Chapter 5: BumpBump
MappingMapping

ump mapping is a technique which was first introduced in 1978 by James F.

Blinn [81]. It was designed to simulate wrinkled or bumped surfaces in two

dimensional computer graphics systems. Bump mapping, in more general terms, is a

method that is used to imply more detail and depth in a 3D models geometry than

actually exists. This eliminates the need for extra polygons which would otherwise be

required to achieve the same level of detail, thus potentially saving a great deal of

storage space and processing time.

B

Most bump mapping techniques work by perturbing the illumination of a surface on a

per-pixel basis, hence creating the illusion of bumps. This means the underlying

geometry is not altered in any way50.

There have been many variations of Blinn's work used, some of which are more

successful than others, see below for a discussion of many of them. Real bump mapping

(as defined by Blinn [81]) uses per-pixel lighting with a lighting calculation at each

pixel based on perturbed normal vectors, but this is computationally expensive

compared to some of the other variations.

50 See [82] for an example of something that does alter the underlying geometry.

Daniel Rhodes 190

Chapter 5: Bump Mapping

Bump mapping and its many variations have, in recent years, become a commonplace

feature in computer games. This has come via fixed functionality and shaders on

modern consumer level graphics hardware. Bump mapping and many of its derivatives

are now considered to be relatively common effects utilised to add realism to a scene.

This has of course triggered much interest in the area for games and hardware

companies, it has however, at the same time, meant less interest in more academic

fields. This has arguably had the effect of enabling less innovation in new techniques

while at the same time allowing more constant improvements to existing methods.

5.1 5.1 Existing SolutionsExisting Solutions

any techniques exist to tackle the problem of bump mapping, a selection of

the best and most influential are presented and examined here.M
5.1.1 5.1.1 Emboss Bump MappingEmboss Bump Mapping

mboss bump mapping is a variety of Fake Bump Mapping, which is an umbrella

term to describe a number of techniques used to approximate Blinn's real bump

mapping.

E

Emboss bump mapping involves using a monochrome version of the original texture

map, shifting it in a particular direction51, subtracting it from the original texture,

shifting it back then blending it with the original texture giving the illusion of shadow

51 Determined by the direction and intensity of the light source.

Daniel Rhodes 191

Chapter 5: Bump Mapping

on one side and highlights on the other. This means that Emboss bump mapping is

similar in principal to the shift and subtract operation in image processing [48]. This

technique relies heavily on the concept of tangent space, as do many other visual effect

techniques such as Anisotropic lighting and Normal Mapping.

The mathematics behind Emboss bump mapping is as follows:

C=L⋅N Dl Dm

where:

C is the final colour

Daniel Rhodes 192

Figure 161: Emboss Bump Mapping [83]

Chapter 5: Bump Mapping

L is the light vector

N is the normal vector

Dl is the light diffuse colour

Dm is the material diffuse colour

As indicated by Gold [83], Emboss bump mapping approximates L⋅N 

This technique relies on the observation that subtracting a grey-scale height map from a

slightly shifted version of itself gives the illusion of an embossed surface, where the

direction of the shift gives the appearance of illumination. “Mathematically, this

subtraction of the height map is an approximation of the derivative of the height map in

the direction of the shift” [84].

Emboss bump mapping is a GeForce2 era technique which uses texel index alteration to

simulate bumps and is a form of embossing. This technique was the first to be widely

utilised in games, with early hardware support provided to simulate embossing via

multiple alpha-blending passes. Despite its early popularity the technique quickly fell

out of favour with developers and as such has been rarely used in games since. This

decline in popularity was largely down to the fact it was difficult to achieve good results

due to emboss bump mapping being a per-polygon technique, which produces artefacts

and is limited to monochrome lighting systems. The technique was incompatible with

multi-coloured lighting meaning emboss bump mapping could not be used if multi-

coloured lighting was required. The increasing capacity and capabilities of the hardware

meant that other techniques, which provide much better results, were quickly available

Daniel Rhodes 193

Chapter 5: Bump Mapping

for little extra relative cost.

Although having the advantage of being a simple technique, emboss bump mapping

only produces correct results on still objects “If you're trying to bump the ripples and

waves in a water to reflect light realistically, it cannot be done because the texture

changes sporadically with the dynamic polygons waving as water. This is where surface

curvature becomes much of a problem. Simulating environmental effects is not possible

with embossing.” [85].

Advantages Disadvantages

Very simple technique Diffuse lighting only, no specular
component

Causes under-sampling artefacts

Cannot simulate objects that need to be
transformed

Limited to monochrome lighting

Table 24: Emboss bump mapping: advantages and disadvantages

5.1.2 5.1.2 Normal MappingNormal Mapping

ormal mapping52 is one of the techniques widely used in the fixed function

pipeline. Of the techniques in common use today, normal mapping is the one

which most closely resembles Blinn's original method [81]. Cook 1984 [86] first

described the normal map format based on Blinn's Bump Mapping technique.

N

52 Also known as DOT3 Bump Mapping or DOTPRODUCT3 Bump Mapping.

Daniel Rhodes 194

Chapter 5: Bump Mapping

While other bump mapping methods perturb the existing normal of a model, normal

mapping replaces the normal entirely via the use of a 'normal map'. A normal map is an

image/texture which is used to represent the direction of the normals on a given surface.

There are two varieties of normal mapping: object space and tangent space. These differ

only in the co-ordinate systems used to measure and store the normals. Tangent space is

the most popular, at the time of writing, as many other current techniques such as

Anisotropic lighting rely on tangent space co-ordinates.

This technique can greatly enhance the appearance of a model with a low polygon

count, by exploiting a normal map generated from a higher resolution model. While this

idea of taking geometric details from a high resolution model had been introduced by

Krishnamurthy and Levoy [88], where this approach was used for creating displacement

maps over nurbs, its application to the more common triangle meshes came later. The

Daniel Rhodes 195

Figure 162: Normal Mapping [87]

Chapter 5: Bump Mapping

year 1998 saw two papers presented which put forward the idea of transferring details as

normal maps from high to low polygon meshes. Cohen et al. [89] presented a

constrained simplification algorithm that tracks how the lost details should be mapped

over the simplified mesh. Cignoni et al. [90] presented a slightly simpler approach that

de-couples the high and low polygonal mesh. This allows the recreation of lost details

independent of the low polygon models creation method. The latter of the two

approaches is the one used by most of the currently available tools, albeit with some

minor variations.

The normal map is used to represent “per-pixel 3-space normals (N) to a surface” [84].

Therefore, by using an extra RGB bitmap (normal map) textured across the model, more

detailed normal vector information can be encoded. This is achieved by mapping each

colour channel in the bitmap (red, green and blue) to a spatial dimension (X, Y and Z).

In the case of object-space normal maps these spatial dimensions are relative to a

constant co-ordinate system. However, for the more popular tangent space normal maps

they are relative to a smoothly varying co-ordinate system. This system is based on the

derivatives of position with respect to texture co-ordinates. This enables much more

detail to be added to the surface of a model, especially in conjunction with advanced

lighting techniques such as the Phong illumination [91].

For example, this information can be used to calculate the Lambertian (diffuse) lighting

intensity of a surface (I), where the unit vector from the shading point to the light source

(L) is dotted53 with the unit normal (N) as shown by the formula:

53 By taking the dot product, also known as the scalar product or inner product.

Daniel Rhodes 196

Chapter 5: Bump Mapping

I=N⋅L

The most common implementation of normal maps, is used by Valve's Source engine

and implemented by hardware in NVIDIA GPUs: The red channel provides the relief of

the material when lit from the right, the green is the relief of the material when lit from

below, and the blue channel should be the relief of the material when lit from the front.

In other words, the XYZ co-ordinates of the face normals are placed in the RGB values

of the normal map. Dempski, 2002 [87] provides more detail on Normal Mapping.

Extra performance can be achieved with normal mapping by combining with the

technique known as MIP mapping. This technique allows the reduction of the normal

map for more distant surfaces, thus lowering the processing burden and allowing the

selection of a more appropriate level of detail.

Advantages Disadvantages

Lower processing requirements compared
to other techniques which produce similar
levels of image quality, when used in
conjunction with MIP mapping

Like its predecessors normal mapping is
only suitable for simulating small
perturbations and is hence inappropriate
for very bumpy surfaces

High quality images

Has enjoyed direct hardware support in
home consoles since the X-Box and in
home PC's since the GeForce2 era [92]

Widely used well known technique

Table 25: Normal mapping: advantages and disadvantages

Daniel Rhodes 197

Chapter 5: Bump Mapping

5.1.3 5.1.3 Environment Mapped Bump MappingEnvironment Mapped Bump Mapping

nvironment mapped bump mapping (EMBM) was not implemented in consumer

level hardware until the Matrox G400 and first generation ATI Radeon cards.

Figure 163 shows an example of EMBM as implemented by ATI [93]. See Dempski,

2002 [94] for more information on Environment Mapping.

E

Nuydens [95] discusses a particular type of EMBM, that was fairly common amongst

fixed function based graphics hardware. More generally, EMBM can be considered as

any bump mapping implementation that is combined with environment mapping. This is

a fairly natural combination of techniques as the reflected ray calculated by bump

mapping can be used to feed the environment mapping calculations. Many techniques,

Daniel Rhodes 198

Figure 163: Environment Mapped Bump Mapping
[93]

Chapter 5: Bump Mapping

such as that proposed by Schilling [96], combine these methods.

EMBM is particularly popular for simulating bumpy reflective surfaces via environment

reflections; which is the typical use of environment maps.

Advantages Disadvantages

Can be either view-dependant or view-
independent

Often suffers from the inappropriate use of
antialiasing techniques

Can be used with both diffuse and specular
lighting models

Good effect for reflective bumpy surfaces

Table 26: EMBM: advantages and disadvantages

5.1.4 5.1.4 Parallax MappingParallax Mapping

arallax Mapping, was first introduced by Kaneko et al. [97] and inspired by

Oliveira and Bishop's work on Relief Textures [98]. Parallax mapping is also

known as Offset Mapping or Virtual Displacement Mapping [95]. It is perhaps the most

advanced bump mapping technique currently utilised by the games industry, as it offers

many of the benefits of displacement mapping for significantly lower cost.

P

Parallax mapping attempts to overcome some of the shortcomings of Blinn's original

Bump Mapping [81] and Cook's Normal Mapping [86] by addressing the issues of

motion parallax, or “the apparent displacement of the object due to viewpoint change”

[99], and dynamic occlusion.

Daniel Rhodes 199

Chapter 5: Bump Mapping

Parallax Mapping is achieved by offsetting each fragment's texture co-ordinates towards

the eye, by a distance which is dependent on the height map value at that location. As

such parallax mapping requires that the texture co-ordinates at each pixel are corrected

by a given offset to approximate the parallax effect when moving the viewpoint relative

to an uneven surface. As stated by Welsh [100], three components are required to

compute this offset, the original texture co-ordinate, a value for the surface height and a

tangent space vector from the pixel to the viewpoint. The texture co-ordinates are

supplied through standard methods, often built into consumer level hardware. The

surface height can be drawn from a height map, which correlates to the regular texture

map by storing one height value per texel. The tangent space vector from the pixel to

the viewpoint is obtained by sourcing the view vector in global co-ordinates by

subtracting a surface position from the eye (view) position and transforming the

resulting vector into tangent space [100].

While parallax mapping, of all the bump mapping techniques, offers the closest results

to displacement mapping, it does still have issues. Steep bumps, for example, are

rendered incorrectly due to sampling issues. This means they can appear as parallel

sheets of texture rather than actual bumps, this is one of the shortcomings of current

techniques which this work looks to overcome. Parallax Mapping also has an inherent

problem in accurately depicting shallow angles, such angles can cause severe aliasing.

Welsh proposes a solution to this problem [100], however the solution introduces other

issues. Welsh suggests the removal of a factor 1/N⋅V for shallow angles, effectively

assuming the dot product is zero for those regions. This in turn causes other problems in

the form of texture “swim” [101].

Daniel Rhodes 200

Chapter 5: Bump Mapping

As shown in Figure 164 Parallax mapping can be used in conjunction with corrected Z

values to create “Z-correct bump mapping” [95], this enables better simulation of

displacement mapping. Particularly on the intersection of two objects, where the

intersection is transformed from a straight line to one that appears to follow the contours

of the bumps. Unfortunately Z-correct bump mapping does have some issues; it can

cause severe problems with hardware depth testing, which when implemented in

shaders can result in completely disabling the early hardware depth culls common on

today's consumer hardware. This can cause large drops in performance and the

opportunity for early fragments culls is lost.

Dynamic parallax occlusion mapping, as introduced at SIGRAPH 2005 and then

expanded on in 2006 by Tatarchuk ([99] and [102] respectively), adds another layer of

realism to parallax mapping by allowing the addition of soft shadows and uses an

adaptive level of detail system to maximise performance. Figure 165 shows Dynamic

parallax occlusion mapping compared against standard normal mapping, the visual

advantages of this method are clear to see.

Daniel Rhodes 201

Figure 164: Z-Correct Bump Mapping Vs Bump Mapping [95]
b) Bump Mappinga) Z-Correct Bump Mapping

Chapter 5: Bump Mapping

Advantages Disadvantages

Closest bump mapping method to
displacement mapping

Steep bumps are rendered incorrectly, due
to sampling issues they can appear as
parallel sheets of texture

Better performance than displacement
mapping

When used as Z-correct bump mapping
can cause issues with hardware depth
testing

Can be extended to simulate soft shadows
and include z-correct bump mapping

Parallax Mapping has an inherent problem
in accurately depicting shallow angles, and
can cause severe aliasing. However the
solution causes other problems in the form
of texture “swim”

Table 27: Parallax mapping: advantages and disadvantages

5.1.5 5.1.5 Displacement MappingDisplacement Mapping

isplacement mapping, while not technically a form of bump mapping as

defined by Blinn [81], is related and belongs to the same family of effects.

Generally, bump mapping techniques perturb the surface normal. Displacement

mapping, on the other hand, perturbs the actual geometric points of a surface creating

D

Daniel Rhodes 202

Figure 165: Parallax Occlusion Mapping Vs Normal Mapping [102]
a) Parallax Occlusion Mapping b) Normal Mapping

Chapter 5: Bump Mapping

real bumps. These bumps, just like real geometry, can cast shadows, occlude other

objects and help simulate much more complex geometry than is possible with Blinn

style bump mapping.

Displacement mapping first became well known over 20 years ago when it was

implemented by the SGI54 tool RenderMan, which is now synonymous with Disney

Pixar. However, Displacement mapping is only now beginning to become viable in real

time applications at the consumer level.

Displacement mapping uses height maps to model surface perturbations and modify the

surface geometry, meaning displacement mapping actually adds geometric detail to a

mesh.

Fairly high polygon counts are required to achieve a good quality effect from

displacement mapping, which leads to poor performance compared to other techniques.

54 Silicon Graphics Inc.

Daniel Rhodes 203

Figure 166: Displacement Mapping Vs Bump Mapping [82]

Chapter 5: Bump Mapping

However, with use of an adaptive tessellation scheme [95] this processing burden can be

drastically reduced while still achieving a high quality effect.

Advantages Disadvantages

High quality effect that can simulate much
greater depth than bump mapping

Slow due to the requirements of
processing higher polygon counts

Hardware acceleration becoming much
more commonplace, particularly with the
advent of shaders

Results can be poor for lower polygon
counts

Can be applied offline

Table 28: Displacement mapping: advantages and disadvantages

5.2 5.2 Anti-Aliased Bump MappingAnti-Aliased Bump Mapping

hile many techniques exist to approach the modelling of wrinkled surfaces,

not much progress has been made in handling the aliasing problems that

ensue from the use of such techniques. Standard anti-aliasing techniques tend to be

designed with texture aliasing in mind, where the texture in question is applied to a flat

surface. Often these techniques, such as MIP mapping, are naively applied to bump

mapped surfaces. This creates theoretically incorrect results due the the non-linearity of

the bump mapping process.

W

Current systems which employ bump mapping techniques commonly attempt to solve

texture aliasing via MIP mapping, perhaps in conjunction with other techniques such as

trilinear filtering. However MIP mapping proves inadequate for even simple textures at

shallow angles, and suffers similar issues even when the texture is face on, where bump

Daniel Rhodes 204

Chapter 5: Bump Mapping

mapping is employed. This is because often the pixel footprint will contain many

different normal vectors and using MIP mapping reduces that to a single averaged

normal. This becomes a problem when used in conjunction with common techniques

such as Phong [103] style lighting (where “Phong style” describes a multitude of

lighting techniques currently in common use which are based wholly or partially on

Phong's model) and environment mapping. Both these, and similar, techniques rely on a

non-linear relationship between the normal vector and final pixel value. Therefore

because averaging does not commute with non-linear transformations the results shall

be theoretically incorrect. This is demonstrated by Figure 167 which has been taken

from Cant and Langensiepen's work on “efficient anti-aliased bump mapping” [1].

Figure 167 a) provides a reference image showing the texture at full scale. Figure 167 b)

shows a theoretically correct representation produced by the averaging of shades.

Figure 167 c) show the deficiencies of the MIP mapping (normal averaging) techniques

causing an overly smooth surface and therefore a glossy final image. Figure 167 d)

shows Cant's technique which takes into account the spread of vectors within each

pixel, this is much closer to the theoretically correct Figure 167 b).

While previous investigations have looked into this problem, each has defects or poses

significant barriers to practical integration with current hardware and/or real-time

performance. Becker and Max [104] present a technique which uses a pre-computed

shade value stored over a variety of lighting and viewing angles. Therefore, their

technique requires a bi-directional reflection distribution function (BRDF) to be stored

Daniel Rhodes 205

Chapter 5: Bump Mapping

per texel. Naturally this requires a large amount of storage space which can be

prohibitive to any practical use of the technique. Their proposed solution to the high

storage requirements is to switch to standard normal mapping at larger scales. However

this proved impractical for real time implementation. Further work has been done on

Daniel Rhodes 206

Figure 167: Comparison of anti-aliasing techniques for normal mapped images:
Environment mapped fractal frosted glass texture [1]

a) Full scale b) Reduced (16x) scale with shade averaging

c) Reduced scale (16x) with normal averaging d) Reduced scale (16x) with normal averaging and
modified spread

Chapter 5: Bump Mapping

reducing the storage requirements (e.g. Sloan et al. [105]), however all have significant

drawbacks which either preclude practical implementation on current consumer grade

hardware or do not solve the problem.

Fournier [106] proposed another solution; by representing the effect of a large number

of evenly distributed vectors by a single vector. By allowing more than one vector to be

used for each texel he solved the problem of bunching, however the technique is limited

to Phong style lighting models. The least squares fitting method was used to find the set

of vectors, however this required a large amount of offline processing.

Olano and North [107] proposed an alternative solution based on Gaussian distributions,

which can be linearly combined when texels are averaged. This has the advantage of

removing the need for a filtering stage, thus providing performance advantages of the

techniques mentioned previously. However this technique suffers from a lack of support

for Fournier's [106] concept of a “multiple surface”. This is due to the fact that a

combination of Gaussian's always combine to a single Gaussian centred around the

average direction. Essentially this precludes the use of Olano and North's technique for

certain types of normal map where more than one normal vector is required per texel, as

demonstrated by Figure 168.

Daniel Rhodes 207

Chapter 5: Bump Mapping

As an alternative to this Schilling [108] proposed the concept of a roughness matrix to

define an anisotropic distribution in place of the Phong peak. However, while this does

provide improved rendering of certain types of bump map, it has limited flexibility

compared to other work in the area. Schilling [96] later extended his work on anti-

aliasing bump maps to environment map based systems. However, as noted above, his

method lacks “multiple surface” capability.

Daniel Rhodes 208

Figure 168: Example of a surface which requires multiple vectors [1]

Chapter 5: Bump Mapping

As observed by Cant and Langensiepen [1], no previous technique which takes into

account “multiple surfaces” provides a suitable candidate for real-time implementation

on consumer level graphics hardware. It is from this point that they introduce their

multi-vector “efficient anti-aliased bump mapping” technique.

5.3 5.3 Super Bump MappingSuper Bump Mapping

ith Super Bump Mapping (SBM) the issue of efficient anti-aliased bump

mapping, using multiple vectors, is addressed. Currently single vector

techniques are commonplace, these techniques suffer various deficiencies including the

inability to correctly represent certain types of bump map as discussed previously. This

new work is based on the methods of Cant and Langensiepen [1], who introduce a

technique based on multiple vectors where the vectors are derived through competitive

learning techniques.

W

5.3.1 5.3.1 Efficient anti-aliased bump mappingEfficient anti-aliased bump mapping

 variation of Cant and Langensiepen's multiple vector technique (“Efficient

anti-aliased bump mapping” [1]) is implemented in shader based graphics

hardware for the first time. Previously only a two vector approximation, with significant

compromises limiting flexibility, has been shown to be possible by Cant and

Langensiepen [1].

A

Daniel Rhodes 209

Chapter 5: Bump Mapping

Cant and Langensiepen's [1] approach bases each vector in the multi-vector set on an

original group of vectors within the source normal map. These vectors are computed via

competitive learning techniques based on the work of Kohonen [109]. As defined by

Cant and Langensiepen, for each texel averaged a set of exemplar vectors is generated.

These exemplars are initially generated with random values before they are trained to

represent groups of vectors from the original set. Cant and Langensiepen provide a

structured English description of the process, this is shown in Figure 169.

While a random seed is used measures are employed to avoid falling into local minima

and to speed convergence. Modifying all exemplars as opposed to just the winning one

avoids the problem of random seed choice which causes long convergence times due to

distant starting points. Exemplars that never win are replaced by actual vectors, these

are the least well represented in the exemplar set, thus avoiding falling into local

minima.

Cant and Langensiepen also employ the concept of a “neighbourhood” to provide

greater “organisation” to the results, this means that the exemplars which fall closest to

the “winner” are modified more strongly that those further away. This enables better

results to be obtained from more structured source normal maps.

The vectors are then grouped by dot product values, and weightings are calculated by

dividing the number of exemplars within a group by the total population in a particular

texel. Empty groups are ignored by being assigned a weighting of zero.

Daniel Rhodes 210

Chapter 5: Bump Mapping

Reduction of the average Q values in successive generations is monitored to detect

convergence, once detected the learning rate is reduced. The learning cycles are finished

when group membership remains constant. Cant and Langensiepen note that very few

cycles are needed for convergence to occur and that entire MIP map sets can be created

in a few minutes on modest hardware.

Daniel Rhodes 211

Figure 169: Structured English description of the competitive learning process

For each texel

For each learning cycle

For each original vector

Compare with exemplar vectors

Make closest (“winning”) exemplar closer to original vector

Make all other exemplars slightly closer to original vector*

If any exemplar not closest to any vector in this cycle

Replace by least well-matched original vector

For each original vector

Place in group associated with closest matching (final) exemplar

For each group

Calculate average vector, weight and Q.

If using environment maps generate MIP (env) map level from Q

Else if using Phong model generate index “n” from Q

*Optionally a “neighbourhood” mechanism is used here with the adjustment
to the non-winning exemplars falling away in inverse proportion to their
distance (within the set) from the winning exemplar.

Chapter 5: Bump Mapping

5.3.2 5.3.2 Super Bump Mapping TechniqueSuper Bump Mapping Technique

his technique builds upon the foundations of Cant and Langensiepen's

competitive learning technique along with standard normal mapping style bump

mapping. As such it should lend itself well to integration with modern graphics

hardware, as well as providing compatibility with other common techniques such as

Parallax Mapping [99] and Phong [103] style lighting techniques.

T

A Cant and Langensiepen style competitive learning system is used to output multiple

vector sets to text files, which are termed SBM files. The system is designed to output

differing numbers of vectors depending on the MIP map level, as demonstrated by Table

29 when taking a 256x256 texture as an example. This is because lower MIP map levels

will require greater assistance from the multiple vectors in retaining detail, while, as

shown by Cant and Langensiepen, lower numbers of vectors are sufficient for the higher

levels.

Daniel Rhodes 212

Chapter 5: Bump Mapping

Level Size Vectors

0 256x256 1

1 128x128 2

2 64x64 3

3 32x32 4

4 16x16 5

5 8x8 6

6 4x4 7

7 2x2 8

8 1x1 9

Table 29: Vectors per level

These files are read into the OpenGL system where the sets are split between two

OpenGL textures (texture2D). This is organised as shown by Figure 170, where each

level is subdivided into an appropriate number of vectors. Level 0 is the same size as a

single full sized 2D texture, each subsequent level (1, 2, 3, etc.) is exactly half the size

of its' preceding level. Therefore, level 2 is exactly half the size of level 1, level 3 is

exactly half the size of level 2 and so on. This is because the size of each level is the

number of vectors multiplied by the total number of pixels in the MIP map level.

Once loaded into OpenGL textures, the SBM information can be passed to the shaders,

where standard environment mapping is performed with the addition of a few

considerations required for Super Bump Mapping.

The texture structure used to squeeze the system into standard OpenGL textures requires

some manipulation of texture co-ordinates in order to properly access the SBM data.

Daniel Rhodes 213

Chapter 5: Bump Mapping

Level 0 is accessed as per a standard 2D texture, the other levels require the calculation

of co-ordinate offsets which allow direct access to individual vectors. Another issue

which needed to be worked around was the problem of squeezing the 5 required values

of x, y, z, weight and level of detail into the four component texels of an OpenGL

texture. This was done by calculating z on the fly, in the shader. It is possible to

calculate z at run time because the vectors are all normalised in the pre-processing

stage, so the vectors' z component can be calculated by:

v z=1−vx
2−v y

2

The reflection vector is calculated and the reflected pixel is fetched from the

environment map once per vector. This is done using the pre-computed weight value to

scale each contribution appropriately based on the spread of the vectors. The final stage

is to take the final surface colour and bilinearly or trilinearly interpolate the results as

required. Trilinear interpolation is preferred in the tests, in order to remove the sharp

transitions between MIP map levels which are often associated with non-trilinearly

Daniel Rhodes 214

Figure 170: Super Bump Mapping memory organisation

Level 0

etc.

Level 1

Level 2

Level 3
Level 4

Chapter 5: Bump Mapping

interpolated scenes. This also has the effect of allowing the estimation of realistic

performance values for the SBM process when combined with other common

techniques.

5.4 5.4 ResultsResults

he analysis of the SBM technique is approached from two perspectives. Firstly,

the final visual appearance of the technique should provide superior results to

standard MIP mapped normal mapping. This is approximated here using the single

vector version of SBM, which is simply standard normal mapping with the addition of

the spread calculation. The SBM technique is therefore compared to both an improved

version of standard normal mapping and the original Cant and Langensiepen technique

[1]. Secondly, the technique shall be analysed in terms of performance in comparison to

single vector techniques.

T

5.4.1 5.4.1 Visual ResultsVisual Results

t can be seen from Figure 171 and Figure 172 that the hardware version of the

technique compares well visually to both Cant and Langensiepen's technique, as

well as the other techniques they focus on in their analysis of the “Efficient anti-aliased

bump mapping” technique. Figure 171 a) and e) provide the best images for comparison

with Figure 172 as these are test run at the same scales as those presented by Cant and

Langensiepen [1]. The hardware based images are presented in an environment mapped

scene reflecting a mountain range environment map. This is to proves it is possible to

I

Daniel Rhodes 215

Chapter 5: Bump Mapping

Daniel Rhodes 216

Figure 171: Flower normal map
e) Vectors = 2, Scale = 16 f) Vectors = 2, Scale = 32

c) Vectors = 2, Scale = 8c) Vectors = 2, Scale = 4

b) Vectors = 2, Scale = 2a) Vectors = 2, Scale = 1

Chapter 5: Bump Mapping

integrate the Super Bump Mapping with existing techniques and also provides a good

example of typical uses for such techniques.

Figure 173 shows the full scale version of the image for comparative purposes, this

shows clearly what the pattern should look like in the environment mapped scene.

Daniel Rhodes 217

Figure 172: Cant & Langensiepen Flower normal map [1]

a) Full Scale b) Reduced scale with shade averaging

f) Reduced scale with Normal averaging f) Reduced scale with Normal averaging and
variable spread

Chapter 5: Bump Mapping

Figure 174 shows the same grid like pattern at a much more difficult 32x scale, Figure

174 a) – f) highlight the difference in final image detail caused by extra vectors. Figure

174 a) illustrates the expected overly glossy image provided by only a single vector

system. This image also shows a lack of detail causing the individual grids to appear

larger in the vertical direction than they are in reality.

Figure 174 a) also demonstrates that too much of the environment map detail remains

clearly visible, given the nature of the original normal map and the scale viewed at this

should not be the case. At the opposite end of the scale Figure 174 f) provides the best

representation of the original by providing the greatest level of detail, to the point where

much of the internal grid detail is still visible. However for this particular pattern the

differences between 16 and 32 vectors will be to a large extent negligible in real world

applications such as games, where the detail would not be scrutinised to such a high

degree as it is here.

Daniel Rhodes 218

Figure 173: Grid normal map, full scale

Chapter 5: Bump Mapping

Daniel Rhodes 219

Figure 174: Grid normal map reduced scale
e) Vectors = 16, Scale = 32

c) Vectors = 4, Scale = 32 c) Vectors = 8, Scale = 32

b) Vectors = 2, Scale = 32a) Vectors = 1, Scale = 32

f) Vectors = 32, Scale = 32

Chapter 5: Bump Mapping

Figure 175 shows a full scale reeded normal map, which is examined at a much more

severe scale in Figure 176. With this pattern it is expected that severe aliasing will be

observed at higher scales. It is for this reason the pattern was chosen, to highlight the

differences the SBM technique can make even under extreme conditions.

Figure 176 a) shows the expected over glossiness and lack of normal map detail

retention witnessed in previous examples. However, it also displays a great deal of

aliasing caused by the nature of the pattern. While this aliasing appears through all the

test images shown here, the increase in the number of vectors has a noticeable effect on

the visibility of the aliasing. As can be seen by examining Figure 176 a) through f), the

aliasing gradually fades with each increase in the number of vectors.

Daniel Rhodes 220

Figure 175: Reeded normal map, full
scale

Chapter 5: Bump Mapping

Daniel Rhodes 221

Figure 176: Grid normal map reduced scale

a) Vectors = 1, Scale = 32 b) Vectors = 2, Scale = 32

c) Vectors = 4, Scale = 32 c) Vectors = 8, Scale = 32

e) Vectors = 16, Scale = 32 f) Vectors = 32, Scale = 32

Chapter 5: Bump Mapping

5.4.2 5.4.2 PerformancePerformance

he performance of this technique is examined on the NVIDIA 8600 platform.

Figure 177 and Appendix G show how scale effects performance when the

number of vectors is kept constant. It is apparent from these graphs that the performance

(measured in frames per second55) falls as scale increases, the number of frames per

second only slip below the target figure of 30fps only at fairly low scales.

T

However, it should be noted that the technique is doing twice as much work as would

normally be required. This is due to the necessity of performing multiple texture fetches

55 FPS.

Daniel Rhodes 222

Figure 177: How scale effect FPS

0
1

0
2

0
3

0
S

c
a

le

5 1 0 1 5 2 0 2 5 3 0
F P S

V e c t o r s = 3 2
N o r m a l M a p = G r i d

Chapter 5: Bump Mapping

and calculating the z normal values on the fly, in order to fit within current hardware

restrictions. It should also be noted that this technique is run in conjunction with

trilinear filtering, which more than doubles the required workload at each pixel.

Figure 178 and Appendix G demonstrate the effect that varying the number of vectors

has on the techniques performance. Varying the number of vectors has a similar, but

greater, effect on the performance of the system compared to the scale variations. As can

be seen, standard single vector normal mapping achieves around 80 frames per second,

and each additional vector reduces the frame rate further.

Daniel Rhodes 223

Figure 178: How the number of vectors effect FPS

0
1

0
2

0
3

0
V

e
ct

o
rs

0 2 0 4 0 6 0 8 0
F P S

S c a l e = 3 2
N o r m a l M a p = G r i d

Chapter 5: Bump Mapping

5.5 5.5 ConclusionsConclusions

t has been shown that Cant and Langensiepen's technique can be implemented on

current consumer level hardware56 and that the results are favourable compared to

their software version presented in [1].

I

The technique displays performance of up-to 80 frames per second, this could easily be

improved up with some simple optimisations and better integration with the hardware.

Some fairly basic adjustments such as being able to include an extra component per

texel, to remove the need to calculate z on the fly, would yield notable performance

improvements. While it was deemed necessary to include trilinear filtering in tests for

reasons of image quality and comparisons to Cant and Langensiepen's images, this is

not a necessity and would also provide performance increases if omitted.

Visually, the technique as implemented here performs well when compared to the single

vector technique and provides comparable visual results to Cant and Langensiepen's

original. The technique is also a prime candidate for combination with other techniques

such as Parallax mapping, as the strengths of both techniques are in different, but

complimentary, areas.

56 An NVIDIA 8600 in testing

Daniel Rhodes 224

Chapter 6: Conclusions and Future Work

Chapter 6: Chapter 6: ConclusionsConclusions
and Future Workand Future Work

ll of the techniques implemented show a great deal of potential for consumer

level hardware, although some are nearer to plausible real-time use than others.A
The depth of field technique presented shows that current consumer level hardware,

while still advancing, is not quite ready for such a complex effect. Although the

software version presented in section 3.4.1 proves the theoretical capabilities of the

algorithm, the current capabilities of consumer level graphics hardware precludes a full

hardware accelerated implementation.

With the aim of implementing a version of the depth of field algorithm, which supports

the see-through effect, and investigating the utilisation of modern hardware in an

attempt to get it to operate in real-time it can only be concluded that there has been

limited success. While each individual component of the system meets the 30fps

performance criteria set, a combination of them to create the full depth of field solution

is not currently possible while maintaining real-time performance.

The software version presented in section 3.4.1 shows that a convincing effect is created

by use of this method and demonstrates the advantages of the see through effect. While

Daniel Rhodes 225

Chapter 6: Conclusions and Future Work

the frame rate is extremely low, it does prove that the algorithm provides a plausible

effect and hence that a full hardware implementation should be beneficial in providing

greater realism to games and simulations in the future.

The scope for future work in the field is quite large, as much is currently not possible in

real time on existing hardware. Future hardware developments will undoubtedly lead to

a solution similar to the one proposed being possible in real time.

This is particularly true now. Since the completion of this work Depth of Field has

become an extremely popular area of research. Papers such as: Practical post-process

Depth of Field [53], Interactive Simulation of the Human Eye Depth of Field and Its

Corrections by Spectacle Lenses [54] and Depth-of-Field Rendering by Pyramidal

Image Processing [55] all propose real-time solutions to the various issues covered in

section 3.2. However, none of these solve all the problems with Depth of Field

simulation and all have significant limitations.

The Fourier texture filtering technique presented provides an interesting alternative to

currently popular techniques, such as NVIDIA's anisotropic filtering. The technique

proves that a lower resolution source image does not necessarily mean lower quality

output. When coupled with the sizeable performance and memory footprint

improvements, which are possible due to the techniques ability to allow reduced texture

sizes, the Fourier technique becomes an attractive proposition for certain texture types.

Possible future work includes further optimisation of the technique for consumer level

Daniel Rhodes 226

Chapter 6: Conclusions and Future Work

hardware. This includes the addition to current API's and hardware, of the ability to

customise texture fetch routines. The technique would also benefit from investigations

into selective use of Fourier texture filtering. By combining the technique with other

existing texture filtering methods, and intelligently selecting the appropriate technique

based on texture content, it should be possible to maximise the benefits of the technique

while using the strengths of other techniques to maximise quality in other areas.

As shown in section 4.4.3, the Fourier techniques show between 1% and 15% of the

performance of the NVIDIA anisotropic filtering technique when tested on the 6800

platform. While this may appear like a large difference, it must be remembered that the

NVIDIA technique is fully hardware optimised. As such, the sample counts and texture

memory bandwidth usage analysed in section 4.4.3 provide a much fairer comparison.

The later tests carried out on the 8600 platform show a drastic decrease in this gap. It

can therefore be said that, should this trend continue, hardware is progressing at a pace

that will allow these techniques to run at comparable speeds within a few generations. It

should also be noted that both the Fourier implementations in the tests are simply a

proof of concept and have not been optimised and refined over a period of years in the

same way that the NVIDIA technique has.

With subtle changes to existing API's and some work on code optimisation, the

performance of both EWA and the Fourier techniques could be improved significantly.

This is a particularly important point because, as illustrated by section 4.4.3, the

NVIDIA anisotropic technique has already peaked in terms of optimisation. This

Daniel Rhodes 227

Chapter 6: Conclusions and Future Work

indicates that any future performance improvements for the NVIDIA technique shall be

linked almost totally to hardware progression or compromises in quality.

When comparing performance between these techniques it must also be noted that the

NVIDIA anisotropic technique is known to use optimised versions of trilinear filtering

(see section 4.2.4), whereas the other trilinear based techniques examined use full

trilinear filtering (4.2.3). It can be deduced therefore that some of the increased

sharpness demonstrated by the NVIDIA technique is provided by this optimisation,

along with a little extra performance. The presence of these optimisations also explains

the visible layer transitions on some textures as well as some of the aliasing issues

suffered by the NVIDIA technique, as shown in section 4.4.3.

The steadily increasing performance of shaders generation on generation should make

optimised versions of the Fourier techniques, as discussed in section 4.4.1, viable for

real-time use within the next few hardware generations. EWA in real-time is likely to be

only a few generations behind. However, neither techniques are currently suitable for

real-time without significant optimisations to the shader code and minor alterations to

existing API's.

As the test results indicate, each texture filtering technique examined has advantages

and drawbacks. The main advantage of the Fourier technique being the ability to use

significantly lower texture resolutions. The Fourier techniques could therefore be used

as a means of reducing overall texture size within an application, and hence

Daniel Rhodes 228

Chapter 6: Conclusions and Future Work

significantly reduce texture bandwidth requirements, by providing smaller textures with

more detail than would otherwise be possible. Because the Fourier techniques achieve

similar quality results at low resolutions to higher resolution source textures with other

techniques, without introducing aliasing. By using a suitable number of frequencies, the

Fourier techniques can match anisotropic filtering for quality. Perhaps the most

important observation is that the Fourier techniques do this with no recorded aliasing

under test conditions, on all but one texture. This is the stripes texture, which did cause

issues with all of the techniques examined.

The reduction in texture sizes possible with the Fourier technique would be

advantageous for systems where memory sizes are limited, where low level caching is

available, or where memory footprint is an issue. The technique may also be used only

on lower MIP map levels where it is most effective, while other techniques better suited

to higher resolutions could be used for the larger levels.

Other important observations made are the differences between the bilinear and trilinear

versions of the Fourier technique as demonstrated by the tests in section 4.4.3. The

addition of trilinear filtering removes a slight degree of sharpness in all cases. However,

the bilinear version does not suffer from the usual visible MIP map level transitions.

These have been suppressed by the technique in the same manner as the aliasing. It can

be concluded therefore that the addition of the Fourier technique to a scene removes the

need to perform trilinear filtering to hide level of detail transitions. This will provide

sharper results and save many samples per cycle.

Daniel Rhodes 229

Chapter 6: Conclusions and Future Work

The current hardware imposed limitations, particularly on the number of frequencies,

indicates that the development of hybrid methods may be preferable in the short term.

These hybrid methods could intelligently choose the appropriate filtering method based

on texture content and angle.

While EWA represents the ultimate eventual aim for anybody looking to minimise

aliasing and maximise texture quality, the Fourier techniques presented here when used

in conjunction with existing techniques could prove an effective real-time solution in

the meantime. Given the kinds of optimisations already in use within these techniques a

hybrid method which combines the sharpness of the NVIDIA techniques images with

the lack of aliasing shown by the Fourier technique could provide a noticeable

improvement over current techniques for performance, memory footprint and image

quality. However, one drawback of the Fourier techniques is the large amount of pre-

processing required to generate the Fourier sets. This is not deemed to be a major failing

of the technique as look-up tables and similar techniques, which also require heavy pre-

processing of data, are commonly used and this type of work is easily done in batch.

The Super Bump Mapping technique demonstrates the advantages of multi-vector bump

mapping, both for detail and anti-aliasing properties. It has been shown, in section 5.4,

that Cant and Langensiepen's technique can be implemented on current consumer level

hardware and that the results are favourable compared to their software version

presented in [1]. While the technique performs well currently, there exists a great deal

more potential for the technique if properly integrated with consumer level hardware.

Daniel Rhodes 230

Chapter 6: Conclusions and Future Work

For full hardware integration this technique requires either adjustments to the number of

components allowed per-pixel or the addition of programmable texture fetch routines to

API's and hardware in future generations.

The technique displays performance of up-to 80 frames per second. As discussed in

section 5.4, this could easily be improved up with some simple optimisations and better

integration with the hardware. Some simple adjustments, such as being able to include

an extra component per texel and the ability to remove the need to calculate z on the fly,

could yield notable performance improvements. While it was deemed necessary to

include trilinear filtering in tests for reasons of image quality comparisons to Cant and

Langensiepen's images, this is not a necessity and would also provide performance

increases if omitted.

Visually, the technique, as shown in section 5.4, performs well when compared to single

vector techniques and provides comparable visual results to Cant and Langensiepen's

original. The technique is also a prime candidate for combination with other techniques

such as Parallax mapping, as the strengths of both techniques are in different, but

complimentary, areas.

Daniel Rhodes 231

References

ReferencesReferences
[1] Cant R & Langensiepen C, 2003. Efficient anti-aliased bump mapping.

Computers & Graphics, Volume 30, Issue 4. pp. 561-580

[2] Rhodes D, Cant R & Al-Dabass D, 2004. Depth Of field algorithms for more

realistic simulations. Proceedings of UKSIM2004, the UK Simulation Society, St

Catherine’s College, Oxford, 29 - 31 March 2004. pp. 162-168

[3] Rhodes D, Cant R & Al-Dabass D, 2003. A new depth of field algorithm with

applications to games. Proceedings of Game-on 2003, 4th International Conference

on Intelligent Games and Simulation, IEE Savoy Place, London, November 19-21,

2003. pp. 157-161

[4] Rhodes D, Cant R & Al-Dabass D, 2003. Current depth of field algorithms &

techniques for games. Proceedings of Game-on 2003, 4th International Conference

on Intelligent Games and Simulation, IEE Savoy Place, London, November 19-21,

2003. pp. 19-21

[5] Galistel A, 2008. GPU sales figures for Q4 2007 [online]. NordicHardware.

Available at: [URL:http://www.nordichardware.com/news,7290.html]

[6] BBC News, 2008. US video games sales hit record [online]. BBC. Available at:

Daniel Rhodes 232

References

[URL:http://news.bbc.co.uk/1/hi/business/7195511.stm]

[7] Intel ®, 2006. Moore’s Law [online]. Intel ®. Available at:

[URL:http://www.intel.com/technology/mooreslaw/index.htm]

[8] Dempski K, 2002. Introduction to Textures. Real-time rendering tips and

techniques in DirectX, 1st ed. Premier Press. ISBN: 1931841276/978-1931841276.

pp. 187-212

[9] Gouraud H, 1973. Continuous shading of curved surfaces. IEEE Transactions on

Computers, Volume C-20, Issue 6. pp. 623-628

[10]Kilgard M, 1999. Hardware Accelerated Anisotropic Lighting [online]. NVIDIA

Coporation, Presented at GDC '99. Available at:

[URL:http://developer.nvidia.com/attach/6820]

[11]Dempski K, 2002. Cartoon Shading. Real-time rendering tips and techniques in

DirectX, 1st ed. Premier Press. ISBN: 1931841276/978-1931841276. pp. 465-477

[12]Rhodes D, Cant R, Langensiepen C & Al-Dabass D, 2004. Programmable GPUs

and shading languages: past, present and future. Proceedings of CGAIDE2004,

5th Game-on International Conference, Microsoft HQ, Reading, UK. pp. 66-70

[13]NVIDIA®, 2004. Programming Graphics Hardware [online]. NVIDIA®

Daniel Rhodes 233

References

Corporation. Available at: [URL:ftp://download.nvidia.com/developer/presentations/

2004/Eurographics/EG_04_IntroductionToGPU.pdf]

[14]LaMothe A, 2003. Polygon Rasterization Review. Tricks of the 3D Game

Programming Gurus, 1st ed. Sams Publishing. ISBN: 0672318350. pp. 928-948

[15]Dempski K, 2002. Fixed Function Lighting. Real-time rendering tips and

techniques in DirectX, 1st ed. Premier Press. ISBN: 1931841276/978-1931841276.

pp. 161-185

[16]Fernando R, 2004. GPU Gems. GPU Gems. NVIDIA. ISBN: 0321228324.

[17]Microsoft®, 2003. Architectural Overview for Direct3D [online]. Microsoft®

Corpiration. Available at: [URL:http://msdn.microsoft.com/library/default.asp?

url=/library/en-

us/directx9_c/directx/graphics/programmingguide/gettingstarted/architecture/overvi

ew.asp]

[18]Microsoft®, 2004. Shader Model 3 [online]. Microsoft® Corporation. Available

at: [URL:http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/directx9_c/directx/graphics/ProgrammingGuide/ProgrammablePipeline/HLSL/Sh

aderModel3/ShaderModel3.asp]

[19]NVIDIA®, 2001. The Infinite Effects GPUs [online]. NVIDIA® Corporation.

Daniel Rhodes 234

References

Available at:

[URL:http://www.nvidia.co.uk/docs/lo/1050/SUPP/gf3ti_overview.pdf]

[20]Mark W, Glanville R, Akeley K & Kilgard M, 2003. Cg: a system for

programming graphics hardware in a C-like language. ACM SIGGRAPH '03

Papers. pp. 896-907

[21]HEXUS, 2002. Cg [online]. HEXUS.NET. Available at:

[URL:http://www.hexus.net/content/reviews/review.php?

dXJsX3Jldmlld19JRD0zNzkmdXJsX3BhZ2U9M]

[22]NVIDIA®, 2004. Shader Model 3 Unleashed [online]. NVIDIA® Corporation.

Available at:

[URL:ftp://download.nvidia.com/developer/presentations/2004/SIGGRAPH/Shader

_Model_3_Unleashed.pdf]

[23]Case L, 2002. Making the Right Graphic Choice [online]. ExtremeTech.

Available at: [URL:http://www.extremetech.com/article2/0,1558,727608,00.asp]

[24]Kessenich J, Baldwin D & Rost R, 2006. The OpenGL® Shading Language

[online]. SGI. Available at: [URL:http://oss.sgi.com/projects/ogl-

sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf]

[25]NVIDIA®, 2002. Getting Started with Cg [online]. NVIDIA® Corporation.

Daniel Rhodes 235

References

Available at: [URL:http://developer.nvidia.com/docs/IO/3974/ATT/Getting

Started.pdf]

[26]ATI, 2004. D3D Tutorial Optimisations [online]. ATI. Available at:

[URL:http://www.ati.com/developer/gdc/D3DTutorial_Optimisations.pdf]

[27]NVIDIA®, 2004. FX Composer [online]. NVIDIA® Corporation. Available at:

[URL:http://developer.nvidia.com/object/fx_composer_home.html]

[28]Penfold D, 2002. HLSL's, Cg and the RenderMonkey [online]. Tom’s Hardware

Guide. Available at: [URL:http://graphics.tomshardware.com/graphic/20021004/]

[29]Rhodes D, Cant R, Langensiepen C & Al-Dabass D, 2006. Teaching Shader

Programming for Games. Proceedings of ICCMS/UKSim 2006, 9th Int.

Conference on Computer Modeling & Simulation, Oriel College, Oxford, 4 - 6

April 2006. pp. 43-47

[30]LaMothe A, 2003. Floating-Point Unit Math Primer . Tricks of the 3D Game

Programming Gurus, 1st ed. Sams Publishing. ISBN: 0672318350. pp. 468-488

[31]Abramowitz M & Stegun A, 1970. Circular Sines and Cosines for Radain

Arguments. Handbook of Mathematical Functions. National Bureau of Standards.

ISBN: 0486612724/978-0486612720. pp. 142-173

Daniel Rhodes 236

References

[32]Rokita P, 1996. Generating Depth-of-Field Effects in Virtual Reality

Applications. IEEE Computer Graphics and Applications, Volume 16, Issue 2. pp.

18-21

[33]Maltby R, 2003. The Optics of Expressive Space. Hollywood Cinema, 2nd ed.

WileyBlackwell. ISBN: 0631216154/978-0631216155. pp. 319-326

[34]NVIDIA®, 2003. Depth of Field [online] . NVIDIA® Corporation. Available at:

[URL:http://developer.nvidia.com/view.asp?IO=depth_field]

[35]ATI®, 2003. Depth of Field [online]. Advanced Micro Devices, Inc. Available at:

[URL:http://www.ati.com/developer/samples/dx9/DepthOfField.html]

[36]Potmesil M & Chakravarty I, 1981. A Lens and Aperture Camera Model for

Synthetic Image Generation. Proceedings of SIGGRAPH '81. pp. 297-305

[37]Microsoft®, 2003. Depth of Field Sample [online]. Microsoft® Corporation.

Available at: [URL:http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

directx9_c/directx/graphics/programmingguide/tutorialsandsamplesandtoolsandtips/

samples/depthoffield.asp]

[38]Serendip, 2003. Seeing more than your eye does [online]. Bryn Mawr College.

Available at: [URL:http://serendip.brynmawr.edu/bb/blindspot1.html]

Daniel Rhodes 237

References

[39]Bungie, 2008. Halo 3 [online]. Bungie.net. Available at:

[URL:http://www.bungie.net/]

[40]Bramwell T, 2007. Halo 3 lacks depth (of field) [online]. Eurogamer Network Ltd.

Available at: [URL:http://www.eurogamer.net/article.php?article_id=73994]

[41]Demers J, 2004. Depth of Field: A Survey of Techniques. GPU Gems. NVIDIA.

ISBN: 0321228324. pp. 375-390

[42]Cannon K, 2002. Pixar Announces Ray Tracing and Global Illumination in

RenderMan® Release 11 [online]. Pixar. Available at:

[URL:https://renderman.pixar.com/products/news/prman11.html]

[43]Christensen P, Fong J, Laur D & Batali D, 2006. Ray Tracing for the Movie

'Cars'. Proceedings of the IEEE Symposium on Interactive Ray Tracing. pp. 1-6

[44]Snyder J & Lengyel J, 1998. Visibility Sorting and Compositing without

Splitting for Image Layer Decompositions. Proceedings of SIGGRAPH '98. pp.

219-230

[45]Chia N, Cant R & Al-Dabass D, 2001. New Anti-Aliasing and Depth of Field

Techniques for Games Graphics. Proceedings of Game-on 2001, 2nd

International Conference on Intelligent Games and Simulation. p. 115

Daniel Rhodes 238

References

[46]Schilling A & Staßer W, 1993. EXACT: Algorithm and hardware architecture

for an improved A-buffer. Proceedings of SIGGRAPH '93. pp. 85-91

[47]Melles Griot Inc, 2003. Circle of Confusion [online]. Melles Griot Inc. Available

at: [URL:http://www.mellesgriot.com/glossary/wordlist/glossarydetails.asp?

wID=132]

[48]Smith S, 1997. Linear Image Processing. The Scientist and Engineer's Guide to

Digital Signal Processing, 1st ed. California Technical Publishing. ISBN:

0966017633/978-0966017632. pp. 397-422

[49]NVIDIA®, 2003. Interactive Order-Independent Transparency [online].

NVIDIA® Corporation. Available at: [URL:http://www.nvidia.co.uk/docs/IO/1316/

ATT/order_independent_transparency.pdf]

[50]Watt A, 2000. 3D Computer Graphics. Pearson Education Limited. ISBN:

0201398559.

[51]Williams L, 1983. Pyramidal Parametrics. ACM SIGGRAPH Computer

Graphics, Volume 17, Issue 3. pp. 1-11

[52]LaMothe A, 2003. Bilinear Texture Filtering. Tricks of the 3D Game

Programming Gurus, 1st ed. Sams Publishing. ISBN: 0672318350. pp. 1250-1256

Daniel Rhodes 239

References

[53]Hammon E, 2003. Practical Post-Process Depth of Field. GPU Gems 3, 1st ed.

Addison-Wesley. ISBN: 0321515269/978-0321515261. pp. 583-605

[54]Kakimoto M, Tatsukawa T, Mukai Y & Nishita T, 2007. Interactive Simulation of

the Human Eye Depth of Field and Its Corrections by Spectacle Lenses.

EUROGRAPHICS, 2007. Volume 26, Number 3. pp. 627-636

[55]Krause M & Strengert M, 2007. Depth-of-Field Rendering by Pyramidal Image

Processing. EUROGRAPHICS, 2007. Volume 26, Number 3. pp. 645-654

[56]Sainz M & Pajarola R, 2004. Point-Based R�endering Techniques. Computers

and Graphics, Volume 28, Issue 6. pp. 869-879

[57]Wikipedia, 2007. Texture Mapping [online]. Wikipedia. Available at: [URL:http://

en.wikipedia.org/wiki/Texture_mapping]

[58]LaMothe A, 2003. Basic Sampling Theory. Tricks of the 3D Game Programming

Gurus, 1st ed. Sams Publishing. ISBN: 0672318350. pp. 976-979

[59]Hecker C, 1995-1996. Perspective Texture Mapping. Game Developer Magazine.

April/May 1995-April/May 1996.

[60]LaMothe A, 2003. Perspective-Correct Texturing and 1/z-Buffering. Tricks of

the 3D Game Programming Gurus, 1st ed. Sams Publishing. ISBN: 0672318350. pp.

Daniel Rhodes 240

References

1207-1250

[61]Beets K & Barron D, 2000. Super-sampling Anti-aliasing Analyzed [online].

Beyond3D. Available at: [URL:www.Beyond3D.com]

[62]Haeberli P & Akeley K, 1990. The accumulation buffer: hardware support for

high-quality rendering. ACM SIGGRAPH Computer Graphics, Volume 24, Issue

4. pp. 309-318

[63]Nyquist H, 1928. Certain Topics in Telegraph Transmission Theory.

Transactions of AIEE, vol 47. pp. 617-644. Reprinted: Proceedings of IEEE, 2002,

Vol 90, No 2. pp. 280-305.

[64]Shannon C, 1949. Communication in the Presence of Noise. Proceedings of IRE,

Vol 37, Issue 1. pp. 10-21. Reprinted: Proceedings of IEEE, 1998, Vol 86, No 2, pp.

447-457.

[65]LaMothe A, 2003. Mip Mapping and Trilinear Texture Filtering. Tricks of the

3D Game Programming Gurus, 1st ed. Sams Publishing. ISBN: 0672318350. pp.

1257-1258

[66]Cant R & Shrubsole P, 2000. Texture Potential MIP Mapping. ACM Transactions

on Graphics, Volume 19, Issue 4. pp. 164-184

Daniel Rhodes 241

References

[67]Weinand L, 2004. ATI's Optimized Texture Filtering Called into Question

[online]. Tom's Hardware. Available at:

[URL:http://www.tomshardware.co.uk/ati,review-965.html]

[68]Greene H & Heckbert P, 1986. Creating Raster Omnimax Images from Multiple

Perspective Views Using the Elliptical Weighted Average Filter. IEEE Computer

Graphics and Applications, IEEE Computer Society Press, Vol 6. pp. 21-27

[69]Heckbert P, 1989. Fundamentals of Texture Mapping and Image Warping.

University of California school of Computer Science.

[70]McCormack J, Perry R, Farkas K & Jouppi N, 1999. FELINE: Fast Elliptical

Lines for Anisotropic Texture Mapping. SIGGRAPH 1999. pp. 243-250

[71]Shin H, Lee J & Kim L, 2001. SPAF: Sub-texel Precision Anisotropic Filtering.

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics

hardware. pp. 99-108

[72]Heckbert P, 1986. Survey of Texture Mapping. IEEE Computer Graphics and

Applications, Volume 6, Issue 11. pp. 56-67

[73]Wolberg G, 1990. Digiatal Image Warping. ISBN: 0818689447/978-0818689444.

WileyBlackwell.

Daniel Rhodes 242

References

[74]Lansdale R, 1991. Texture Mapping and Resampling for Computer Graphics.

Masters Thesis, Department of Electrical Engineering, University of Toronto.

[75]Schilling A, Knittel G & Strasser W, 1996. Texram: A Smart Memory for

Texturing. IEEE Computer Graphics and Applications, IEEE Computer Society

Press, Volume 16, Issue 3. pp. 32-41

[76]Norton A, Rockwood A & Skolmoski P, 1982. Clamping: A method of

antialiasing textured surfaces by bandwidth limiting in object space. ACM

SIGGRAPH Computer Graphics, Volume 16, Issue 3. pp. 1-8

[77]Weisstein E, 2007. Fourier Transform [online]. MathWorld - A Wolfram Web

Resource. Available at:

[URL:http://mathworld.wolfram.com/FourierTransform.html]

[78]Schacter B, 1980. Long Crested Wave Models. Computer Graphics and Image

Processing, Vol 12. pp. 187-201

[79]Mitchell D & Netravali A, 1988. Reconstruction Filters in Computer Graphics.

ACM SIGGRAPH Computer Graphics, Volume 22, Issue 4. pp. 221-228

[80]Microsoft®, 2003. Understanding Frames Per Second (FPS) [online].

Microsoft® Corporation. Available at:

[URL:http://support.microsoft.com/kb/269068]

Daniel Rhodes 243

References

[81]Blinn JF, 1978. Simulation of Wrinkled Surfaces. ACM SIGGRAPH Computer

Graphics, Volume 12, Issue 3. pp. 286-292

[82]Donnelly W, 2005. Per-Pixel Displacement Mapping with Distance Functions.

GPU Gems 2, 1st ed. Addison-Wesley. ISBN: 0321335597/987-0321335593. pp.

123-136

[83]Gold M, 1999. Emboss Bump Mapping [online]. NVIDIA® Corporation.

Available at:

[URL:http://developer.nvidia.com/object/emboss_bump_mapping.html]

[84]ATI®, 2007. Bump Mapping on Consumer 3D Graphics Accelerators [online].

2007 Advanced Micro Devices, Inc. Available at: [URL:http://ati.de/developer/sdk/

RadeonSDK/Html/Tutorials/RadeonBumpMap.html]

[85]Schlag J, 1994. Fast Embossing Effects on Raster Image Data. Graphics Gems

IV. Academic Press. ISBN: 0123361559/978-0123361554. pp. 433-437

[86]Cook R, 1984. Shade Trees. Proceedings of SIGGRAPH '84. pp. 223-231

[87]Dempski K, 2002. Per-Pixel Lighting - Bump Mapping. Real-time rendering tips

and techniques in DirectX Edition: 1st ed Journal: Real-time rendering tips and

techniques in DirectX, 1st ed. Premier Press. ISBN: 1931841276/978-1931841276.

pp. 586-607

Daniel Rhodes 244

References

[88]Krishnamurthy V & Levoy M, 1996. Fitting Smooth Surfaces to Dense Polygon

Meshes. Proceedings of SIGGRAPH '96. pp. 313-324

[89]Cohen J, Olano M & Manocha D, 1998. Appearance-preserving simplification.

Proceedings of SIGGRAPH '98. pp. 115-122

[90]Cignoni P, Montani C, Rocchini C & Scopigno R, 1998. A General Method for

Preserving Attribute Values on Simplifed Meshes. IEEE Visualization,

Proceedings of the conference on Visualization '98. pp. 59-66

[91]Persson E, 2003. Fragment level Phong illumination. Shader X2. Wordware.

ISBN: 155622902X/978-1556229022.

[92]Cloward B, 2007. Normal Mapping Tutorial [online]. bencloward.com. Available

at: [URL:http://www.bencloward.com/tutorials_normal_maps2.shtml]

[93]ATI®, 2007. Dynamic Bump Mapping on Radeon® [online]. Advanced Micro

Devices, Inc. Available at:

[URL:http://ati.de/developer/sdk/RadeonSDK/Html/Samples/Direct3D/RadeonDyna

micEMBM.html]

[94]Dempski K, 2002. Reflection and Refraction. Real-time rendering tips and

techniques in DirectX, 1st ed. Premier Press. ISBN: 1931841276/978-1931841276.

pp. 479-498

Daniel Rhodes 245

References

[95]Nuydens T, 2007. An Overview of Bump Mapping Techniques [online].

Delphi3D. Available at: [URL:http://www.delphi3d.net/articles/viewarticle.php?

article=bumpmapping.htm]

[96]Schilling A, 2001. Antialiasing of Environment Maps. Computer Graphics

Forum; 20(1). pp. 5-11

[97]Kaneko T, Takahei T, Inami M, Kawakami N, Yanagida Y, Maeda T & Tachi S,

2001. Detailed Shape Representation with Parallax Mapping. ICAT 2001. pp.

205-208

[98]Oliveira M, Bishop G & McAllister D, 2000. Relief texture mapping. Proceedings

of SIGGRAPH 2000. pp. 359-368

[99]Tatarchuk N, 2005. Practical Dynamic Parallax Occlusion Mapping. ACM

SIGGRAPH 2005 Sketches, Article No. 106.

[100]Welsh T, 2004. Parallax Mapping with Offset Limiting: A PerPixel

Approximation of Uneven Surfaces. Technical Report: Infiscape Corporation.

[101]McGuire M & McGuire M, 2005. Steep Parallax Mapping. Iron Lore

Entertainment, I3D Poster; Brown Technical Report.

[102]Tatarchuk N, 2006. Dynamic Parallax Occlusion Mapping with Approximate

Daniel Rhodes 246

References

Soft Shadows. Proceedings of the 2006 symposium on interactive entertainment 3D

graphics and games. pp. 63-69

[103]Phong B, 1975. Illumination for computer generated pictures. Communications

of the ACM, Volume 18 , Issue 6. pp. 311-317

[104]Becker B & Max N, 1993. Smooth transitions between bump rendering

algorithms. Proceedings of SIGGRAPH ’93. pp. 183-190

[105]Sloan P, Hall J, Hart J & Snyder J, 2004. Clustered principle components for

precomputed radiance transfer. Proceedings of SIGGRAPH '04. pp. 382-391

[106]Fournier A, 1992. Filtering Normal Maps and Creating Multiple Surfaces.

Department of Computer Science, University of British Columbia. Technical report

TR92-41.

[107]Olano M & North M, 1997. Normal Distribution Mapping. UNC Computer

Science Technical Report 97-041, Department of Computer Science, University of

North Carolina.

[108]Schilling A, 1997. Towards real-time photorealistic rendering: challenges and

solutions. Proceedings of the 1997 SIGGRAPH/EUROGRAPHICS Workshop on

Graphics Hardware, Los Angeles, California. p. 7–15

Daniel Rhodes 247

References

[109]Kohonen T, 1990. The self-organizing map. Proceedings of the IEEE, Volume 78,

Issue 9. pp. 1464-1480

Daniel Rhodes 248

Appendices

AppendicesAppendices

Daniel Rhodes 249

Appendices

Appendix A:Appendix A: SoftwareSoftware

Frequency TestsFrequency Tests

Daniel Rhodes 250

Appendices

Daniel Rhodes 251

Figure A1: Software Frequency Tests: Black & White Tartan

i) 25 frequenciesh) 50 frequenciesg) 100 frequencies

a) Original

j) 10 frequencies

Figure A1: Software Frequency Tests: Alien Tile

b) 5000 frequencies

a) Original

c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 252

Figure A2: Software Frequency Tests: Bark

a) Original

c) 2500 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

d) 1000 frequenciesb) 5000 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 253

Figure A3: Software Frequency Tests: Silk Stripes

a) Original

b) 5000 frequencies g) 100 frequencies h) 50 frequencies

i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 254

Figure A5: Software Frequency Tests: Brick

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Figure A4: Software Frequency Tests: Brushed Metal

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 255

Figure A5: Software Frequency Tests: Brushed Metal 2

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 256

Figure A6: Software Frequency Tests: Clouds

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 257

Figure A7: Software Frequency Tests: Black Denim

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 258

Figure A8: Software Frequency Tests: Fire

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 259

Figure A9: Software Frequency Tests: Pencilled Floral

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 260

Figure A10: Software Frequency Tests: Grass

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 261

Figure A11: Software Frequency Tests: Nails

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 262

Figure A12: Software Frequency Tests: Floor Tiles

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 263

Figure A13: Software Frequency Tests: Rock

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 264

Figure A14: Software Frequency Tests: Colourful Swirl

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 265

Figure A15: Software Frequency Tests: Tiles

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Daniel Rhodes 266

Figure A16: Software Frequency Tests: Ice

a) Original

b) 5000 frequencies c) 2500 frequencies d) 1000 frequencies

e) 500 frequencies f) 250 frequencies g) 100 frequencies

h) 50 frequencies i) 25 frequencies j) 10 frequencies

Appendices

Appendix B:Appendix B: HardwareHardware

Frequency TestsFrequency Tests

Daniel Rhodes 267

Appendices

Daniel Rhodes 268

Figure B1: Software Frequency Tests: Black & White Tartan

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Figure B1: Hardware Frequency Tests: Alien Tile

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 269

Figure B2: Hardware Frequency Tests: Bark

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 270

Figure B3: Hardware Frequency Tests: Silk Stripes

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 271

Figure B4: Hardware Frequency Tests: Brick Wall

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 272

Figure B5: Hardware Frequency Tests: Brushed Metal

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 273

Figure B6: Hardware Frequency Tests: Brushed Metal 2

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 274

Figure B7: Hardware Frequency Tests: Clouds

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 275

Figure B8: Hardware Frequency Tests: Black Denim

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 276

Figure B9: Hardware Frequency Tests: Fire

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 277

Figure B10: Hardware Frequency Tests: Pencilled Floral

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 278

Figure B11: Hardware Frequency Tests: Grass

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 279

Figure B12: Hardware Frequency Tests: Nails

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 280

Figure B13: Hardware Frequency Tests: Tiles

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 281

Figure B14: Hardware Frequency Tests: Tiles

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 282

Figure B15: Hardware Frequency Tests: Rock

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 283

Figure B16: Hardware Frequency Tests: Metal Floor

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 284

Figure B17: Hardware Frequency Tests: Colourful Swirl

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 285

Figure B18: Hardware Frequency Tests: Tiles

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 286

Figure B19: Hardware Frequency Tests: Stripes

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Daniel Rhodes 287

Figure B21: Software Frequency Tests: Wood

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Figure B20: Hardware Frequency Tests: Ice

b2) 25 frequencies

c3) 10 frequenciesc2) 25 frequencies

b1) 50 frequencies

c1) 50 frequencies

a) Original

b3) 10 frequencies

b) Software

c) Hardware

Appendices

Appendix C:Appendix C: Typical VideoTypical Video

Game ScenesGame Scenes

Daniel Rhodes 288

Figure C1: Deus Ex, 2000

Figure C2: Morrowind, 2002

Appendices

Daniel Rhodes 289

Figure C3: Alien Vs Predator 2, 2001

Figure C4: Command and Conquer: Generals, 2003

Appendices

Daniel Rhodes 290

Figure C5: Half-Life 2, 2004

Figure C6: Civilization IV, 2005

Appendices

Daniel Rhodes 291

Figure C7: Company of Heroes, 2006

Appendices

Daniel Rhodes 292

Figure C8: Half-Life 2: Episode Two, 2007

Appendices

Appendix D:Appendix D: HistogramsHistograms

Daniel Rhodes 293

Appendices

Daniel Rhodes 294

Figure D1: Brick Histograms

b) Brick red channel range limited

d) Brick green channel range limited

e) Brick blue channel full range

c) Brick green channel full range

a) Brick red channel full range

f) Brick blue channel range limited

Appendices

Daniel Rhodes 295

Figure D2: Fence Histograms

b) Fence red channel range limited

d) Fence green channel range limited

e) Fence blue channel full range

c) Fence green channel full range

a) Fence red channel full range

f) Fence blue channel range limited

Appendices

Daniel Rhodes 296

Figure D3: Flowers Histograms

b) Flowers red channel range limited

d) Flowers green channel range limited

e) Flowers blue channel full range

c) Flowers green channel full range

a) Flowers red channel full range

f) Flowers blue channel range limited

Appendices

Daniel Rhodes 297

Figure D4: Grass Histograms

b) Grass red channel range limited

d) Grass green channel range limited

e) Grass blue channel full range

c) Grass green channel full range

a) Grass red channel full range

f) Grass blue channel range limited

Appendices

Daniel Rhodes 298

Figure D5: Hex Histograms

b) Hex red channel range limited

d) Hex green channel range limited

e) Hex blue channel full range

c) Hex green channel full range

a) Hex red channel full range

f) Hex blue channel range limited

Appendices

Daniel Rhodes 299

Figure D6: Metal Histograms

b) Metal red channel range limited

d) Metal green channel range limited

e) Metal blue channel full range

c) Metal green channel full range

a) Metal red channel full range

f) Metal blue channel range limited

Appendices

Daniel Rhodes 300

Figure D7: Stone Wall Histograms

b) Stone Wall red channel range limited

d) Stone Wall green channel range limited

e) Stone Wall blue channel full range

c) Stone Wall green channel full range

a) Stone Wall red channel full range

f) Stone Wall blue channel range limited

Appendices

Daniel Rhodes 301

Figure D8: Stripes Histograms

b) Stripes red channel range limited

d) Stripes green channel range limited

e) Stripes blue channel full range

c) Stripes green channel full range

a) Stripes red channel full range

f) Stripes blue channel range limited

Appendices

Daniel Rhodes 302

Figure D9: Text Histograms

b) Text red channel range limited

d) Text green channel range limited

e) Text blue channel full range

c) Text green channel full range

a) Text red channel full range

f) Text blue channel range limited

Appendices

Appendix E:Appendix E: Textures inTextures in

Fourier SpaceFourier Space

Daniel Rhodes 303

Appendices

Daniel Rhodes 304

Figure E1: Textures for Testing: Fourier profiles
f) Fence g) Grass

a) Hex b) Brick

h) Stone Wall

c) Flowers d) Stripes

i) Metal

e) Wave

j) Text

Appendices

Appendix F:Appendix F: Super BumpSuper Bump

Mapping ImagesMapping Images

Daniel Rhodes 305

Appendices

Daniel Rhodes 306

Figure F1: Grid normal map
f) Vectors = 32, Scale = 1e) Vectors = 16, Scale = 1

c) Vectors = 8, Scale = 1c) Vectors = 4, Scale = 1

b) Vectors = 2, Scale = 1a) Vectors = 1, Scale = 1

Appendices

Daniel Rhodes 307

Figure F2: Grid normal map

a) Vectors = 1, Scale = 2 b) Vectors = 2, Scale = 2

c) Vectors = 4, Scale = 2 c) Vectors = 8, Scale = 2

f) Vectors = 32, Scale = 2e) Vectors = 16, Scale = 2

Appendices

Daniel Rhodes 308

Figure F3: Grid normal map
f) Vectors = 32, Scale = 4e) Vectors = 16, Scale = 4

c) Vectors = 8, Scale = 4c) Vectors = 4, Scale = 4

b) Vectors = 2, Scale = 4a) Vectors = 1, Scale = 4

Appendices

Daniel Rhodes 309

Figure F4: Grid normal map

a) Vectors = 1, Scale = 8 b) Vectors = 2, Scale = 8

c) Vectors = 4, Scale = 8 c) Vectors = 8, Scale = 8

f) Vectors = 32, Scale = 8e) Vectors = 16, Scale = 8

Appendices

Daniel Rhodes 310

Figure F5: Grid normal map
f) Vectors = 32, Scale = 16e) Vectors = 16, Scale = 16

c) Vectors = 8, Scale = 16c) Vectors = 4, Scale = 16

b) Vectors = 2, Scale = 16a) Vectors = 1, Scale = 16

Appendices

Daniel Rhodes 311

Figure F6: Grid normal map
f) Vectors = 32, Scale = 32e) Vectors = 16, Scale = 32

c) Vectors = 8, Scale = 32c) Vectors = 4, Scale = 32

b) Vectors = 2, Scale = 32a) Vectors = 1, Scale = 32

Appendices

Daniel Rhodes 312

Figure F7: Reeded normal map
f) Vectors = 32, Scale = 1e) Vectors = 16, Scale = 1

c) Vectors = 8, Scale = 1c) Vectors = 4, Scale = 1

b) Vectors = 2, Scale = 1a) Vectors = 1, Scale = 1

Appendices

Daniel Rhodes 313

Figure F8: Reeded normal map

a) Vectors = 1, Scale = 2 b) Vectors = 2, Scale = 2

c) Vectors = 4, Scale = 2 c) Vectors = 8, Scale = 2

f) Vectors = 32, Scale = 2e) Vectors = 16, Scale = 2

Appendices

Daniel Rhodes 314

Figure F9: Reeded normal map
f) Vectors = 32, Scale = 4e) Vectors = 16, Scale = 4

c) Vectors = 8, Scale = 4c) Vectors = 4, Scale = 4

b) Vectors = 2, Scale = 4a) Vectors = 1, Scale = 4

Appendices

Daniel Rhodes 315

Figure F10: Reeded normal map

a) Vectors = 1, Scale = 8 b) Vectors = 2, Scale = 8

c) Vectors = 4, Scale = 8 c) Vectors = 8, Scale = 8

f) Vectors = 32, Scale = 8e) Vectors = 16, Scale = 8

Appendices

Daniel Rhodes 316

Figure F11: Reeded normal map
f) Vectors = 32, Scale = 16e) Vectors = 16, Scale = 16

c) Vectors = 8, Scale = 16c) Vectors = 4, Scale = 16

b) Vectors = 2, Scale = 16a) Vectors = 1, Scale = 16

Appendices

Daniel Rhodes 317

Figure F12: Reeded normal map

a) Vectors = 1, Scale = 32 b) Vectors = 2, Scale = 32

c) Vectors = 4, Scale = 32 c) Vectors = 8, Scale = 32

e) Vectors = 16, Scale = 32 f) Vectors = 32, Scale = 32

Appendices

Appendix G:Appendix G: Super BumpSuper Bump

Mapping Performance GraphsMapping Performance Graphs

Daniel Rhodes 318

Figure G1: Grid – varying scale

0
1

0
2

0
3

0
S

c
a

le

5 1 0 1 5 2 0 2 5 3 0
F P S

V e c t o r s = 3 2
N o r m a l M a p = G r i d

Appendices

Daniel Rhodes 319

0
1

0
2

0
3

0
S

c
a

le

0 2 0 4 0 6 0
F P S

V e c t o r s = 3 2
N o r m a l M a p = R e e d e d

Figure G2: Swirl – varying scale

0
1

0
2

0
3

0
S

c
a

le

0 1 0 2 0 3 0
F P S

V e c t o r s = 3 2
N o r m a l M a p = S w i r l

Figure G3: Reeded – varying scale

0
1

0
2

0
3

0
S

c
a

le

0 2 0 4 0 6 0
F P S

V e c t o r s = 3 2
N o r m a l M a p = R e e d e d

Appendices

Daniel Rhodes 320

Figure G4: Grid – varying vectors

0
1

0
2

0
3

0
V

e
ct

o
rs

0 2 0 4 0 6 0 8 0
F P S

S c a l e = 3 2
N o r m a l M a p = G r i d

Figure G5: Reeded – varying vectors

0
1

0
2

0
3

0
V

e
ct

o
rs

0 2 0 4 0 6 0 8 0
F P S

S c a l e = 3 2
N o r m a l M a p = R e e d e d

Appendices

Appendix H:Appendix H: Shader CodeShader Code

extractsextracts

Trilinear Fourier Pixel Shader

//--
// File: trilinearfourier.ps
// Version: V3.0
// Author: Daniel Rhodes
// Description: Texture Mapping Pixel Shader in GLSL
// Notes: GLSL documentation can be foundat:
// http://developer.3dlabs.com/openGL2/index.htm
//--
// GLSL version
#version 110
#pragma optimize(on) // Turn off some (but not all!!!) optimisations,

// makes more readable ASM
#pragma debug(off) // Adds extra debug info to output log (ilog_*.txt etc.),

// need NVemulate.exe to activate on NVIDIA cards
uniform sampler2D BMPTexture;
uniform sampler2D FreqTexture;
uniform float fFilterWidth;
uniform int iNumFreqs;
uniform vec2 TexMapSize;
uniform vec2 FreqTexMapSize;
uniform int iAngleOffset;
uniform int iLevelOffset;
uniform int iNumLevels;
const float PI = radians(180.0);
//---
// Name: LOD
// In: dtx, dty
// Out: subLevel = calculated sub level (i.e. the LOD from the minor axis of the
pixel footprint),
// angle = calcuated current angle sector,
// fFreqScale = Used to scale the number of frequencies used dependant on

Daniel Rhodes 321

Appendices

angle
// Returns: Level of Detail
// Desc: Calculates the level of detail
//---
float LOD(vec2 dtx, vec2 dty, out float subLevel, out float angle, out float fFreqScale)
{

vec2 vTx = vec2(pow(dtx.x, 2.0), pow(dty.x, 2.0));
vec2 vTy = vec2(pow(dtx.y, 2.0), pow(dty.y, 2.0));
// Find top X
float fTopX = 2.0 * ((dtx.x * dty.x) + (dtx.y * dty.y));
// Find bottom x
float fBottomX = vTx.x - vTx.y + vTy.x - vTy.y;
// Find first extremum angle
float fTheta= 0.5 * atan(fTopX, fBottomX); // Angle in screen space,
// later need angle in tex space for working out components
float fCosTheta = cos(fTheta);
float fSinTheta = sin(fTheta);
vec2 vdtp = vec2(0.0, 0.0);
vec2 vdtm = vec2(0.0, 0.0);
// Vector to first extremum (major axis)
vdtp.x = fCosTheta * dtx.x + fSinTheta * dty.x;
vdtp.y = fCosTheta * dtx.y + fSinTheta * dty.y;
// Vector to second extremum (minor axis)
vdtm.x = -fSinTheta * dtx.x + fCosTheta * dty.x;
vdtm.y = -fSinTheta * dtx.y + fCosTheta * dty.y;
// determine length of major axis to set up probes (as defined by

McCormack probes = isotopic filtering operations like trilinear or Gaussian)
float fPixMajorAxis = pow(vdtp.x, 2.0) + pow(vdtp.y, 2.0);
// determine length of minor axis for mip map level selection
float fPixMinorAxis = pow(vdtm.x, 2.0) + pow(vdtm.y, 2.0);
float axisTemp = 0.0;
if(fPixMinorAxis > fPixMajorAxis) {

axisTemp = fPixMajorAxis;
fPixMajorAxis = fPixMinorAxis;
fPixMinorAxis = axisTemp;

}
// phi(footprint angle in texture space) = arctan(vdtp.y, vdtp.x);
angle = atan(vdtp.y, vdtp.x);
angle += radians(22.5);
if (angle > PI)

angle -= PI;
float fTexelDiff = ((1.0 / TexMapSize.x) * (1.0 / TexMapSize.x)) +

((1.0 / TexMapSize.y) * (1.0 / TexMapSize.y));
// Work out Level of Detail & compensate for not taking square root
float fLOD = log2(fPixMajorAxis / fTexelDiff) / 2.0;
subLevel = log2(fPixMinorAxis / fTexelDiff) / 2.0;
fFreqScale = (fLOD - subLevel) / float(iNumLevels);//0.125 * (fLOD -

subLevel);

Daniel Rhodes 322

Appendices

fFreqScale *= 5.0;
fFreqScale = clamp(fFreqScale, 0.0, 1.0);
return(fLOD);

}

//---
// Name: BilinearInterpolation
// In: iLOD = Level of Detail in integer format
// Out: -
// Returns: Pixel values after interpolation
// Desc: Bilinearly interpolates our MIP map level
//---
vec4 BilinearInterpolation(int iLOD)
{

// Find point sampled texels coodinates in image space
float fConvfactorToLODSpace = exp2(float(iLOD));
vec2 MipCoordImageSpace = (gl_TexCoord[0].xy * TexMapSize) /

fConvfactorToLODSpace;
// Work out Texture coodinates (in image space) for all texels to sample
float fFloorX = floor(MipCoordImageSpace.x);
float fFloorY = floor(MipCoordImageSpace.y);
float fCeilX = ceil(MipCoordImageSpace.x);
float fCeilY = ceil(MipCoordImageSpace.y);
// Work out reciprical to save on divides
vec2 MipCoordImageSpaceRecip = fConvfactorToLODSpace /

TexMapSize;
// Multiply by reciprocal, same as fFloorX / TexMapSize.x
float fFloorXOverTexX = fFloorX * MipCoordImageSpaceRecip.x;
float fCeilXOverTexX = fCeilX * MipCoordImageSpaceRecip.x;
float fFloorYOverTexY = fFloorY * MipCoordImageSpaceRecip.y;
float fCeilYOverTexY = fCeilY * MipCoordImageSpaceRecip.y;
vec2 TexCoord00 = vec2(fFloorXOverTexX, fFloorYOverTexY);
vec2 TexCoord10 = vec2(fCeilXOverTexX, fFloorYOverTexY);
vec2 TexCoord01 = vec2(fFloorXOverTexX, fCeilYOverTexY);
vec2 TexCoord11 = vec2(fCeilXOverTexX, fCeilYOverTexY);
// Use texture coodinates to sample actual texels
vec4 vTexel00 = texture2DLod(BMPTexture, TexCoord00, float(iLOD));
vec4 vTexel10 = texture2DLod(BMPTexture, TexCoord10, float(iLOD));
vec4 vTexel01 = texture2DLod(BMPTexture, TexCoord01, float(iLOD));
vec4 vTexel11 = texture2DLod(BMPTexture, TexCoord11, float(iLOD));
// Find weight value for linear interpolation
vec2 Weight = fract(MipCoordImageSpace);
vec4 vLerpTop = mix(vTexel00, vTexel10, Weight.x);
vec4 vLerpBottom = mix(vTexel01, vTexel11, Weight.x);
vec4 vFinalPixColour = mix(vLerpTop, vLerpBottom, Weight.y);
return(vFinalPixColour);

}

Daniel Rhodes 323

Appendices

//---
// Name: AnisotropicFilteringWithFourier
// In: -
// Out: -
// Returns: Pixel values after filtering
// Desc: Applies Fourier based texture filtering to our image
//---
vec4 AnisotropicFilteringWithFourier()
{

// Get partial derivates
vec2 dtx = dFdx(gl_TexCoord[0].xy);
vec2 dty = dFdy(gl_TexCoord[0].xy);
float subLevel = 0.0;
float fAngle = 0.0;
float fFreqScale = 0.0;
float fLOD = LOD(dtx, dty, subLevel, fAngle, fFreqScale);
int iAngle = 0;
if (fAngle < 0.0)

iAngle = int(floor((fAngle + PI) / radians(45.0)));
else

iAngle = int(floor((fAngle) / radians(45.0)));

if (iAngle < 0)
iAngle = 0;

if (fLOD < 0.0)
fLOD = 0.0;

if (subLevel < 0.0)
subLevel = 0.0;

// Fourier
vec2 Lcood = vec2(0.0, 0.0);
// Scale for texture size
vec2 dtxScaled = TexMapSize.x * dtx;
vec2 dtyScaled = TexMapSize.y * dty;
mat2 mM = mat2(dtxScaled.x, dtxScaled.y , dtyScaled.x, dtyScaled.y);
vec2 vPpkqk = vec2(0.0, 0.0);
vec2 fpdotMpkqk = vec2(0.0, 0.0);
float fSpkqk = 0.0;
float Scale = 0.003921568627450980392156862745098; // = 1 / 255
float index = 0.0;
vec4 temp1= vec4(0.0, 0.0, 0.0, 0.0);
vec4 temp2= vec4(0.0, 0.0, 0.0, 0.0);
float adjxfreq = 0.0, adjyfreq = 0.0;
float angle = 0.0, sinA = 0.0, cosA = 0.0;
float ftotR = 0.0, ftotG= 0.0, ftotB= 0.0;
float fR = 0.0, fG = 0.0, fB = 0.0;
float xfreq, yfreq;
Lcood.y = ((float(iAngle) * float(iAngleOffset)) + (float(int(fLOD)) *

Daniel Rhodes 324

Appendices

float(iLevelOffset)) + float(int(subLevel))) / FreqTexMapSize.y;
for (int i = int(float(iNumFreqs)) - 1; i >= 0; i--) {

// Calculate index to get approprate pixel from texture
index = (float(i) * 2.0);
Lcood.x = index / FreqTexMapSize.x;
// Using calculated texture coordinates perform texture fetches
// Assuming texture size = 512
temp1 = texture2D(FreqTexture, Lcood);
Lcood.x = (index + 1.0) / FreqTexMapSize.x;
temp2 = texture2D(FreqTexture, Lcood);
xfreq = temp1.r;
yfreq = temp1.g;
// Adjust for texmap size
if (xfreq > (FreqTexMapSize.x / 2.0))

adjxfreq = xfreq - FreqTexMapSize.x;
else

adjxfreq = xfreq;
if (yfreq > (FreqTexMapSize.y / 2.0))

adjyfreq = -yfreq + FreqTexMapSize.y;
else

adjyfreq = -yfreq;
// Work out anti-aliasing factor
vPpkqk = vec2((adjxfreq / FreqTexMapSize.x * 2.0 * PI),

(adjyfreq / FreqTexMapSize.y * 2.0 * PI));
fpdotMpkqk = vPpkqk * mM;
fSpkqk = exp(-((fFilterWidth / 2.0) * dot(fpdotMpkqk,

fpdotMpkqk)));
// phase angle
angle = (adjxfreq * gl_TexCoord[0].x + adjyfreq *

gl_TexCoord[0].y) * 2.0 * PI;
cosA = cos(angle);
sinA = sin(angle);
fR = (temp1.b * cosA - temp1.a * sinA);
fG = (temp2.r * cosA - temp2.g * sinA);
fB = (temp2.b * cosA - temp2.a * sinA);
// Include anti-aliasing factor
fR *= fSpkqk;
fG *= fSpkqk;
fB *= fSpkqk;
ftotR += fR;
ftotG += fG;
ftotB += fB;

}
vec4 AnisoPixColourHighRes = vec4(ftotR * Scale, ftotG * Scale, ftotB *

Scale, 0.0);
vec4 BilinearPixColourHighRes = BilinearInterpolation(int(fLOD));
vec4 BilinearPixColourLowRes = BilinearInterpolation(int(++fLOD));
// This is an intentional precriment to set fLOD for use in the next Fourier

Daniel Rhodes 325

Appendices

loop
vec4 vMipCol = mix(BilinearPixColourHighRes,

BilinearPixColourLowRes, fract(fLOD));
fR = 0.0;
fG = 0.0;
fB = 0.0;
ftotR = 0.0;
ftotG = 0.0;
ftotB = 0.0;
Lcood.y = ((float(iAngle) * float(iAngleOffset)) + (float(int(fLOD)) *

float(iLevelOffset)) + float(int(subLevel))) / FreqTexMapSize.y;
for (int i = int(float(iNumFreqs) * fFreqScale) - 1; i >= 0; i--) {

// Calculate index to get approprate pixel from texture
index = (float(i) * 2.0);
Lcood.x = index / FreqTexMapSize.x;
// Uing calculated etxture coordinates perform texture fetches
// Assuming texture size = 512
temp1 = texture2D(FreqTexture, Lcood);
Lcood.x = (index + 1.0) / FreqTexMapSize.x;
temp2 = texture2D(FreqTexture, Lcood);
xfreq = temp1.r;
yfreq = temp1.g;
if (xfreq > (FreqTexMapSize.x / 2.0))

adjxfreq = xfreq - FreqTexMapSize.x;
else

adjxfreq = xfreq;
if (yfreq > (FreqTexMapSize.y / 2.0))

adjyfreq = -yfreq + FreqTexMapSize.y;
else

adjyfreq = -yfreq;
// Work out anti-aliasing factor
vPpkqk = vec2((adjxfreq / FreqTexMapSize.x * 2.0 * PI),

(adjyfreq / FreqTexMapSize.y * 2.0 * PI));
fpdotMpkqk = vPpkqk * mM;
fSpkqk = exp(-((fFilterWidth / 2.0) * dot(fpdotMpkqk,

fpdotMpkqk)));
// phase angle
angle = (adjxfreq * gl_TexCoord[0].x + adjyfreq *

gl_TexCoord[0].y) * 2.0 * PI;
cosA = cos(angle);
sinA = sin(angle);
fR = (temp1.b * cosA - temp1.a * sinA);
fG = (temp2.r * cosA - temp2.g * sinA);
fB = (temp2.b * cosA - temp2.a * sinA);
// Include anti-aliasing factor
fR *= fSpkqk;
fG *= fSpkqk;
fB *= fSpkqk;

Daniel Rhodes 326

Appendices

ftotR += fR;
ftotG += fG;
ftotB += fB;

vec4 AnisoPixColourLowRes = vec4(ftotR * Scale, ftotG * Scale,
ftotB * Scale, 0.0);

vec4 AnisoPixColour = mix(AnisoPixColourHighRes,
AnisoPixColourLowRes, fract(fLOD));

return(vMipCol + AnisoPixColour);
}

//---
// Name: main
// In: -
// Out: -
// Desc: Main function
//---
void main() {

gl_FragColor = AnisotropicFilteringWithFourier();
}

Daniel Rhodes 327

	Chapter 1: Introduction
	Chapter 2: Overview of Graphics Hardware
	2.1 The Fixed Function Pipeline
	2.2 The Programmable Pipeline
	2.2.1 Shader Model 3
	2.2.2 High Level Shader Languages
	2.2.2.1 Alternatives
	2.2.2.2 Advantages and Disadvantages

	2.3 Life at the Bleeding Edge
	2.3.1 Precision

	Chapter 3: Depth of Field
	3.1 What is Depth of Field?
	3.2 Existing Solutions
	3.2.1 Blurring by Multiple Viewpoints
	3.2.1.1 Blurring by Multisampling
	3.2.1.2 Ray Tracing

	3.2.2 Blurring Dependant on Depth

	3.3 New Depth of Field Implementation
	3.4 Results
	3.4.1 Software
	3.4.2 Hardware
	3.4.2.1 A-Buffers
	3.4.2.2 B-Buffers

	3.5 Conclusions

	Chapter 4: Texture Mapping and Aliasing
	4.1 The Aliasing Problem
	4.1.1 Types of Aliasing
	4.1.1.1 Edge Aliasing
	4.1.1.1.1 Supersampling
	4.1.1.1.2 Multisampling

	4.1.1.2 Texture Aliasing

	4.2 Existing Solutions
	4.2.1 MIP Mapping
	4.2.2 Bilinear Filtering
	4.2.3 Trilinear Filtering
	4.2.4 “Brilinear” and “Trylinear” Filtering
	4.2.5 RIP Mapping
	4.2.6 Anisotropic Filtering
	4.2.7 Elliptical Weighted Average
	4.2.8 Texram
	4.2.9 Feline
	4.2.10 Clamping
	4.2.11 Texture Potential MIP Mapping
	4.2.12 Conclusions

	4.3 Fourier Textures
	4.3.1 Fourier Textures Technique
	4.3.2 Results
	4.3.3 Conclusions

	4.4 Fourier Texture Filtering
	4.4.1 Fourier Texture Filtering Technique
	4.4.2 Texture Selection
	4.4.3 Results
	4.4.3.1 Software
	4.4.3.2 Hardware
	4.4.3.2.1 Theoretical Performance
	4.4.3.2.2 Memory utilisation
	4.4.3.2.3 Samples and bandwidth
	4.4.3.2.4 Observed Performance
	4.4.3.2.4.1 Brick Wall

	4.4.3.2.5 Visual Results
	4.4.3.2.5.1 Brick Wall
	4.4.3.2.5.2 Fence
	4.4.3.2.5.3 Flowers
	4.4.3.2.5.4 Grass
	4.4.3.2.5.5 Hex
	4.4.3.2.5.6 Metal
	4.4.3.2.5.7 Stripes
	4.4.3.2.5.8 Wall
	4.4.3.2.5.9 Text
	4.4.3.2.5.10 Wave

	4.5 Conclusions

	Chapter 5: Bump Mapping
	5.1 Existing Solutions
	5.1.1 Emboss Bump Mapping
	5.1.2 Normal Mapping
	5.1.3 Environment Mapped Bump Mapping
	5.1.4 Parallax Mapping
	5.1.5 Displacement Mapping

	5.2 Anti-Aliased Bump Mapping
	5.3 Super Bump Mapping
	5.3.1 Efficient anti-aliased bump mapping
	5.3.2 Super Bump Mapping Technique

	5.4 Results
	5.4.1 Visual Results
	5.4.2 Performance

	5.5 Conclusions

	Chapter 6: Conclusions and Future Work
	References
	Appendices

