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Abstract 10 

Cell mechanical behaviour is increasingly recognised as a central biophysical parameter in cancer and 11 

stem cell research, and methods of investigating their mechanical behaviour are therefore needed.  12 

We have developed a novel qualitative method based on quantitative phase imaging which is capable 13 

of investigating cell mechanical behaviour in real-time at cellular resolution using Optical Coherence 14 

Phase Microscopy (OCPM), and stimulating the cells non-invasively using hydrostatic pressure. The 15 

method was exemplified to distinguish between cells with distinct mechanical properties, and transient 16 

change induced by cytochalasin D.  17 

We showed the potential of qualitative phase imaging to detect nanoscale intracellular displacement 18 

induced by varying hydrostatic pressure in microfluidic channels, reflecting cell mechanical behaviour. 19 

Further physical modelling is required to yield quantitative mechanical properties. 20 

Keywords: optical coherence phase microscopy, mechanical behaviour, real-time monitoring, 21 

hydrostatic pressure, phase imaging 22 

1. Introduction 23 

There are more than fifteen cancer deaths per minute globally [1], with over 90% of cancer deaths 24 

caused by metastasis [2]. Metastasis is known to alter the mechanical behaviour of cells from the 25 

nanoscopic to macroscopic scales [3], with metastatic potential increasing as cell stiffness decreases 26 

[4 - 7], and nanoscale features of synthetic surfaces have been shown to influence cell behaviour [8].  27 

Similarly, stem cells are vitally important in regenerative and therapeutic medicine due to their self-28 

renewal and differentiation abilities. Mechanical stimuli have been shown to have a major role in 29 

regulating stem cell behaviour, with differentiation controlled by the stiffness of the substrate where 30 

stem cells attach, through a mechanosensitive process [9]. Therefore, there is a clear need to 31 

investigate the mechanical behaviour of cancer cells and stem cells as well as their response to various 32 

mechanical stimuli.  33 

Clinicians have used manual palpation of suspect tissues as a qualitative diagnostic tool for centuries. 34 

It is, however, subjective, and carried out on the macroscopic scale. Non-invasive imaging techniques 35 

such as ultrasound and Magnetic Resonance Imaging (MRI) elastography have translated to the clinic 36 

[10, 11], however both lack the spatial resolution to be used on the cellular scale. The measurement 37 

of mechanical behaviour on the nano- and microscopic scale has used techniques such as atomic force 38 

microscopy (AFM), optical tweezers, and optical coherence elastography (OCE) [12, 13]. These do, 39 
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however, suffer from drawbacks for single cell characterisation in that they use contact loading or are 40 

unable to assess cellular mechanics in a 3D microenvironment.  41 

AFM is one of the most common techniques currently available to assess cell mechanics [14-16]. It 42 

uses a cantilever and tip to determine quantitative cell mechanical properties, achieving high 43 

resolution and mechanical sensitivity, but is inherently invasive, and as a surface-based technique it 44 

cannot investigate intracellular mechanical properties or when cells are cultured in a 3D environment.  45 

OCT is a low-coherence interferometry based imaging technique which uses the optical scattering 46 

properties of a sample in a manner analogous to ultrasound to create either a 2-D or 3-D image which 47 

shows structural features at the micrometer scale [17-19]. OCE is an extension of OCT which maps the 48 

mechanical properties of tissue by detecting the depth-resolved deformation produced as a result of 49 

compression [13, 20-22]. OCE is comparable to palpation in that a force is applied to the sample under 50 

investigation and the resulting displacement tracked [3].  To date, OCE systems typically achieve a 51 

depth of focus of 0.5 – 3 mm and A-scan rate greater than 20 kHz [13, 22].  52 

Quantitative phase imaging (QPI) is an optical microscopy technique [23, 24] which uses the phase 53 

contrast of a sample to improve upon intrinsic contrast imaging. The shift in optical path length (OPL) 54 

created by the sample is measured quantitatively at the nanometre scale. It is a powerful label-free 55 

tool which has been used to investigate the biophysics of red blood cells [25, 26], cell growth [27], and 56 

track microbial motility [28]. 57 

Combining OCT with high transverse resolution confocal microscopy results in optical coherence 58 

microscopy (OCM), achieving sub-micron resolution imaging with high dynamic range and sensitivity, 59 

allowing for 3D cellular imaging. OCM further extends to Optical Coherence Phase Microscopy 60 

(OCPM), a quantitative phase imaging method, to measure the phase changes and cross-sectional 61 

depth information from a sample. It is sensitive to sub-micrometer changes in OPL, and achieves high 62 

spatial resolution. It is therefore an ideal candidate for monitoring displacements. OCPM has been 63 

used to characterise nanoscale cellular dynamics in live cells [29], and has been shown to measure cell 64 

viability based on intracellular optical fluctuations [30, 31].  65 

In this study, we aimed to propose a method for the contact-less assessment of cell mechanical 66 

behaviour in vitro that will allow further longitudinal studies without damaging the cells or 67 

compromising cell culture sterility.  Therefore, we described a novel method based on a standard 68 

commercial OCT that can measure the relative cell mechanical response to hydrostatic pressure non-69 

invasively and in real-time. This method will be easily translatable to any Fourier-domain OCT and with 70 

some modifications to most of the QPI methods.  71 

 72 

 73 

2. Materials and Methods 74 

 75 

2.1 Cell culture 76 

Breast cancer cells (MCF-7) and mouse fibroblasts (3T3) were used in this study to provide two 77 

lineages with distinct mechanical properties. Both were cultured in Dulbecco's Modified Eagle 78 

Medium (DMEM) with 10% foetal bovine serum, 1% L-glutamine and 1% Penicillin-Streptomycin. Cells 79 

were incubated at 370C and 5% CO2 and were passaged every 3 days. Cells were dissociated using 80 



 

trypsin-EDTA and transferred to microfluidic channels (microslide IV, Ibidi) 24 hours prior to 81 

experimentation. We used adherent cells lines that attached to the bottom substrate of the channels. 82 

 83 

2.2 Hydrostatic Force 84 

In this study, we modulated the hydrostatic pressure in microfluidic channels to induce a hydrostatic 85 

force on adherent cells attaching at bottom surface of the channels to produce a non-contact force 86 

similar to previous work [32]. In this work, we used controlled cyclic square wave pressure, instead of 87 

a pressure column. We generated a change in hydrostatic pressure in the microfluidics channels by 88 

altering the air pressure in a fluid container (falcon, 50mL), connected through a Tygon (Saint-Gobain, 89 

France) tube to microfluidic channels (microslide IV, Ibidi). 90 

In first approximation, we can consider the cells as half-spheres attached to an incompressible solid 91 

substrate (see figure 1). Pressure and force are transmitted equally to all directions, and on figure 1 92 

we will have equal forces on the right and left side of the cell, with no net horizontal hydrostatic 93 

component. Whereas there will be a net vertical force, Fv, at the top of the cell proportional to the 94 

projected area. For a cell of radius r, we have: 95 

 96 

𝐹𝑣 = (∆𝑃 + 𝜌𝑔ℎ)(𝜋𝑟2) + 𝜌𝑔𝑉𝑤  (1) 97 

 98 

Where ΔP is the applied pressure change above the atmospheric pressure, is the water density (1000 99 

kgm-3), h the height of the water column, and g the gravitational acceleration (9.81 ms-2). Vw is the 100 

volume of water on top of the cell starting from the cell top. It can be written as the difference 101 

between the cell volume and the volume of an imaginary rectangular box surrounding the cell.  102 

𝑉𝑤 = 8𝑟3 − (4/6)𝜋𝑟2  (2) 103 

Typically for a cell of radius 20 m and ΔP=1000 N.m-2 (10 mbar) we calculated a net vertical force of 104 

1.2 µN. However the actual cross-sectional area of a cell is much lower as attachment to the substrate 105 

is made through adhesion focal point. This could lead to acting net vertical force an order of magnitude 106 

lower, i.e. in the nano-Newton range. 107 

In this study, MCF-7 and 3T3 cells were exposed to cyclic mechanical stimuli in the form of square 108 

wave hydrostatic pressure from a microfluidic pressure pump (AF1, Elveflow, France), inside a 109 

microfluidic channel with pressure ranging from 1000 Nm-2 to 20000 Nm-2 with frequencies ranging 110 

from 80-300 mHz. It was ensured that no air bubbles were present in the sample medium by allowing 111 

a flow of media through the microchannel before sealing with a Luer lock plug (Elveflow, France).  112 

 113 

2.3 Optical coherence phase microscopy 114 

Experimental setup 115 

The OCPM system was based around a commercial Thorlabs Callisto optical coherence tomography 116 

(OCT) system, as shown in figure 2.  The superluminescent light source was centred at 930 nm with a 117 

full width half maximum (FWHM) of 90 nm, with an axial resolution of 5um in water. The scanning 118 

rate is 1.2KHz; which was order of magnitude lower than state of the art OCT used for OCE. The light 119 

source was output to a FC/APC fibre, which is the guided with an F280APC-B collimating lens (Thorlabs, 120 



 

NJ, USA). The light path is then directed by galvanometers which control the image acquisition, and 121 

finally is coupled into the side port of a Leica DMIRE2 microscope. The system is built in a common 122 

path configuration to improve the phase stability [33]. Using a beamsplitter (Thorlabs, NJ, USA), the 123 

brightfield image of the sample was collected digitally using a CMOS camera (Thorlabs, NJ, USA). A full 124 

list of components can be found in section 6.  125 

The acquired spectra were then processed as described in figure 3. First, the average background was 126 

removed, then the signal is resampled in k-space. The modulation of the spectra, collected at a spatial 127 

location xi,yi, encodes the in-depth location (zi) of the scattering particles, which are retrieved by zero-128 

padding of the signal and fast Fourier transform. This forms the A-scan at the location (xi,yi) and the 129 

real part [35] of the complex signal is compressed on a log scale to give a depth-dependent intensity 130 

profile; while the phase at each depth zi of the OCT signal is retrieved from the argument.    131 

 132 

2.4 Quantifying intracellular displacement due to cyclic hydroforce 133 

A 4D data cube (256x256x512x96 in x, y, z, t pixels) was captured with an acquisition frequency of 134 

1,200 A-scans, or (x, z) scans, per second to sample the varying phase over time. A quantitative 135 

measurement of the change in phase was calculated as the differing phase between successive B-136 

scans. A quantitative measurement of the change in phase was calculated as the differing phase 137 

between successive B-scans. Therefore, the phase was unwrapped along the time-dimension and 138 

not spatially. This was implemented directly with the Matlab (Mathworks) function unwrap. 139 

 The phase difference was then converted into displacement, d, through the following equation: 140 

𝑑 =
∆𝛷𝜆0

4𝜋𝑛
     (3) 141 

Where; n is the refractive index, λ0 is the central wavelength and ΔΦ is the phase difference between 142 

adjacent B scans. In OCPM, the phase stability is defined as the square root of the phase variance, 143 

which is inversely related to the SNR [34]. With a theoretical SNR of 83 db in air, the system had a 144 

theoretical phase stability of 7×10−5 Radians[34]. In liquid medium, the SNR was measured as 35 dB 145 

corresponding to a phase resolution of 0.01 radian [34]. 146 

For rectangular input pressure, the relative displacement of each pixel, Δd, was then determined 147 

through the equation: 148 

𝛥𝑑 = 2 ∗ 𝛥𝛷 𝑅𝑀𝑆(𝑥, 𝑦)
𝜆0

4𝜋𝑛
  (4) 149 

Where; ΔΦRMS(x, y) is the root mean squared (RMS) phase change at each pixel as a result of the 150 

induced displacement. This gives us a qualitative measurement of the cell mechanical behaviour in 151 

response to hydrostatic pressure.  152 

Our experimental set-up achieves a scan rate adequate for acquiring the mechanical behaviour of 153 

cultured cells. Whilst the scan rate used in our system is lower than the current state of the art, this 154 

method is easily translatable to other systems where a higher rate could be used.  155 

2.5 Assessing whole cell response 156 

To assess the whole cell mechanical qualitative behaviour we plotted the distribution of the root 157 

mean squared phase for all pixels within the cell, and analysed their distribution. Pixels belonging to 158 

a cell were determined by first, manually removing the first strong reflections associated with the 159 

plastic substrate, and then using an intensity-based mask to delineate the cells.   160 



 

 161 

2.5 Cellscale Microsquisher® 162 

In order to confirm an appropriate optical phantom for the OCPM set-up, 6% (w/v) agarose beads 163 

(Agarose bead technology, Madrid, Spain) of diameter 150 μm to 350 μm were subjected to parallel 164 

plate compression in a water bath at a strain rate of 2.5 μms-1 using the Cell Scale Microsquisher® and 165 

results recorded in the associated Squisherjoy software. A 1 mm compression plate was attached to a 166 

235 µm microbeam. The force vs displacement data was then converted into stress vs strain data, with 167 

the associated curve used to obtain a linear regression line from which the elasticity was calculated at 168 

10% nominal compression of the sphere. 169 

Theory 170 

Force vs displacement data was converted to stress vs strain using a modified Hertz model [36] as 171 

described below.  172 

𝛷 = 𝑐𝑜𝑠−1(
𝑅−𝛿

𝑅
)    (5) 173 

𝑎 = (𝑅 − 𝛿)𝑡𝑎𝑛𝛷    (6) 174 

𝑓(𝑎) =
2(1+𝑣)𝑅2

(𝑎2+4𝑅2)3/2
+

1−𝑣2

(𝑎2+4𝑅2)1/2
 (7) 175 

𝐸 =
3(1−𝑣2)𝐹

4𝛿𝑎
−

𝑓(𝑎)𝐹

𝜋𝛿
   (8) 176 

Where; F is the applied force, R is the sphere radius, δ is the displacement, ν the Poisson’s ratio (0.5) 177 

and E the Young’s Modulus. 178 

 179 

3. Results and Discussion 180 

In this paper, we presented an optical coherence elastography method in which the novelty relied 181 

mostly on the way the mechanical forces were realised in a non-contact way to allow live cell 182 

measurement, and on the associated signal processing techniques. We demonstrated, and 183 

exemplified for single pixels in figure 7, that this method created intracellular displacements within 184 

the cells that were directly coupled to the input mechanical stimuli, and that they were correlated to 185 

transient changes in cell mechanical properties after addition of cytochalasin D, and that they could 186 

distinguish two exemplar cell line extensively studied for their mechanical properties. The proposed 187 

optical set-up was based on a commercial OCT engine (Callisto, Thorlabs) with relatively low 188 

specification when compared to recent advances in the field [] , and could therefore translated easily 189 

to higher specifications OCT systems and with some small modification to most of the QPI techniques.  190 

Figure 5 (a) shows the stress-strain curve of 6% agarose beads (Agarose bead technology, Madrid, 191 

Spain) acquired from plate to plate compression tests using the Cell Scale Microsquisher system, 192 

shown in (b). This was converted from force-displacement to stress strain using the modified Hertz 193 

model described in section 2.5. The mean Young’s modulus was determined to be 834 Pa ± 45 Pa at 194 

10% nominal compression of the bead. Single beads of varying diameter from 150-350 µm were tested 195 

in a water bath. This helped us to confirm that the mechanical properties of agarose beads were in 196 

the same order of magnitude as of biological cells that typically range in the 1 kPa region [5]. They 197 

were therefore a well calibrated test sample to test the new methods based on OCPM. 198 



 

In figure 6 we report the mean intensity map (a) and phase response (b)-(d) of agarose beads of size 199 

150-350 µm, measured using the novel OCPM system. The period of a 100 mbar hydrostatic pressure 200 

was varied, with the phase response to 4 s, 6 s, and 12 s cycles shown in figure 6 (b), (c), and (d) 201 

respectively at one pixel of the bead. The change in the time varying phase response correlated 202 

directly to the change in pressure cycle. This demonstrated that OCPM could monitor nanoscale 203 

displacements induced by hydrostatic pressure in materials with mechanical properties comparable 204 

to biological cells; and could therefore be used to map the relative mechanical properties of cells in a 205 

non-invasive and real-time manner.  206 

We then used the OCPM system to measure the mechanical behaviour of MCF-7 cells in response to 207 

varying hydrostatic pressure (figure 7), where we plot the response of a single pixel of the cell under 208 

test. Here we show a bright field image of the MCF-7 cells in (a) with the corresponding OCPM en-face 209 

image and OCPM B-scan or ‘cell profile’ in figure 7 (b) and (c). Cyclic stress was successfully applied 210 

directly to cells within the microfluidic chip and the corresponding displacement was recorded in real-211 

time at the nanometre scale for each pixel of the cell (see figure 7 (d)-(k)). A change in amplitude 212 

and/or frequency of the stimuli was translated to a corresponding cell response. In (d), (e) and (f) the 213 

amplitude was varied, with the phase response of a single pixel within the cell to 0, 100, and 200mbar 214 

cycles of 6s shown respectively. Here we see a clear change in the phase response which is directly 215 

proportional to the change in stimulus. Intra-cellular variability gives rise to some variation in the 216 

amplitude of the response, however the proportional correspondence of the response cycle to the 217 

hydrostatic pressure cycle is clear. 218 

In (g), (h) and (i) we show the phase response to a variation in the period of the cyclic stress. The 219 

response to 4, 6, and 12s cycles at an amplitude of 200mbar are shown here. Again, we can see that 220 

the response clearly correlates to the change in stimulus. 221 

We then looked at the ability of the system to monitor the relative biomechanical properties of cells 222 

known to be of different stiffness. In (j) we show the phase response of MCF-7 cells to 50mbar of 223 

pressure with a 6s period. We then exposed the cells to 10µM cytocalasin-D, an actin polymerisation 224 

inhibitor known to reduce cell stiffness [37], for 180 minutes prior to recording the phase response in 225 

(k). We can see an increased response here, indicating that the cells were indeed softer after the 226 

addition of Cytochalasin-D. We then calculated the mean RMS of the phase signal in (l) for all pixels of 227 

the cell. This gives a quantitative comparison of the relative cell response which confirms that the cells 228 

were indeed significantly softer as expected after exposure to the drug (p<0.01), demonstrating the 229 

potential of OCPM combined with hydrostatic pressure to monitor non-destructively and in real-time 230 

cell mechanical behaviour. 231 

In figure 8 we compare two cell lines with distinctly different mechanical properties. We compare the 232 

properties of 3T3 cells with MCF-7 cells. 3T3 cells have previously been described as stiffer that MCF-233 

7 in [4]. In (a) we show an en-face image of MCF-7 cells, and of 3T3 in (d). Interferences between the 234 

reflections from the cell membrane and the glass surface generates “spatial” coherent interference 235 

fringes in intensity when the cell thickness is below the coherence gate (<5µm in this case), hence the 236 

banding effect observed in (d). These fringes was however not detrimental to our method as phase 237 

differences were calculated along the time dimension (successive B scans), and not adjacent pixels. 238 

We show B-scans, or ‘cell profiles’ of MCF-7 and 3T3 in (b) and (e) respectively, and the corresponding 239 

mechanical contrast maps of relative displacement in (c) and (f), where the relative displacement 240 

increases as the map moves to yellow.  241 

This map is quantified in (g) and (h) where we plot the relative displacement for all pixels in the cell 242 

on a histogram. It is quite clear from this that the mean displacement of the MCF-7 cells is much 243 



 

greater than that of the 3T3, showing a marked difference in the relative displacement between 244 

different cell lines. The high level of mean displacement recorded for MCF-7 cells indicates a soft cell, 245 

with the low mean displacement if 3T3 indicating a stiffer cell. This data agrees with the figures 246 

previously reported in literature, which state that 3T3 cells are stiffer [38, 4].  247 

This evidence indicates that this novel non-destructive method is capable of providing a qualitative 248 

description of cell mechanical behaviour, and map of mechanical contrast. Qualitative mechanical 249 

contrast has been shown as a clinically relevant method in [39-44]. 250 

 251 

4. Conclusions 252 

We have described a new qualitative method, based on the principles of quantitative phase imaging, 253 

to monitor in real-time and non-destructively the mechanical behaviour of cells in monolayers that is 254 

directly translatable to the study of the mechanical behaviour of cancer cells and of the stem cell 255 

niche. This method is also easily translatable to in vivo imaging.  256 

We have monitored cell response to cyclic hydrostatic pressure. Nanoscale intracellular displacements 257 

were recorded as a function of pressure and can be directly related to the biomechanical properties 258 

of cells. Differences were observed in relative strain rates between the cell lines under investigation. 259 

Further physical modelling will be required to yield quantitative mechanical properties.  260 

 261 
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 372 

Figure 1: Resulting hydrostatic force induced on adherent cells above a substrate 373 

 374 

 375 

 376 

 377 

Figure 2: OCPM set-up for qualitative measurement of cell mechanical properties: SMF, single mode fibre; CL, collimating 378 
lens; SM, scanning mirrors; SL, scanning lens; BS, beam splitter; TL, tube lens; MC, microchannel. 379 

 380 



 

 381 

Figure 3: Digital processing of acquired OCPM spectra to retrieve intensity image and phase information at each pixel. 382 

 383 

 384 

Figure 4: Relative displacement induced by hydrostatic pressure measured as a change in phase. 1) Imaging system 2) Cyclic 385 
hydrostatic pressure is applied to cells which are cultured on a clear, reflective surface, which results in a change in the 386 

phase signal. 387 



 

 388 

Figure 5: Mechanical properties of 6% agarose beads: Representative stress- strain curve of 350 µm bead (a), and 389 
compression testing in a water bath at strain rate of 2.5 µms-1 (b). 390 

 391 

Figure 6: a) OCPM cross section of agarose beads, b-d) response to hydrostatic pressure of 4 s, 6 s, 12 s cycles with 100 392 
mbar amplitude. 393 



 

 394 

Figure 7: Bright field image (a), OCPM en-face (b), and OCPM ‘cell profile’ (c) of MCF-7 cells. Cell response at 0, 100, 200 395 
mbar amplitude (d, e, f) with a 6 s cycle, and for various hydrostatic pressure period, 4 s, 6 s,12 s cycles with 200 mbar 396 

amplitude (g, h, i), and (j) Typical cell response before drug addition (6 s, 50 mbar) and after addition of 10 µM 397 
Cytochalasin-D (k). (l) Mean response (N=242 pixels) shows significant (p<0.01) increase in cell response. Phase value was 398 

taken at a representative pixel rather than the same pixel location within the cell. 399 



 

 400 

Figure 8: OCPM en-face live imaging of MCF-7 cells (a) and 3T3 cells (d) with typical OCPM cross-section, ‘cell profile’, (b) 401 
and (e) and associated relative cell displacement induced by hydrostatic pressure (c) and (f). Heterogeneity in intracellular 402 

displacement was found in histograms of displacement (g, h) with a marked difference between 3T3 and MCF-7 which 403 
suggested 3T3 being stiffer. 404 
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