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Abstract 

It is stated that 3D recording and modelling of heritage buildings entails accurate building 

models (as-built). However, this paper presents an analysis of the 3D modelling accuracy for 

the creation of historical building information models (HBIM), considering the complexity and 

the deformations of historical buildings, using point cloud data and BIM tools. The 3D 

modelling processes analysed are based on a three-stage semi-automatic approach leading 

to the generation of HBIM, including manual and automatic processes. The three stages 

consist of: (a) optical and terrestrial laser scanning; (b) meshing processes; and finally (c) 3D 

solid modelling to be assembled into HBIM. Next, this approach analysed the mesh 

deformations generated automatically in comparison to the initial point cloud data. The 

deformations and the accuracy evaluation have been undertaken using different commercial 

software. Finally, our modelling approach shows that it can improve the accuracy of the 3D 

models achieved using existing BIM technologies.  
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1. Introduction 

Building Information Modelling (BIM) for heritage is a fast-developing field in term of research 

and professional practice. 3D documentation of historical buildings and sites is a need 

nowadays for heritage conservation and its management (Remondino and Rizzi, 2010). The 

reliable 3D virtual reconstruction of architectural heritage is the logic step towards the 

achievement of as-built models by implementing the historical assets as a BIM model for 
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conservation and management purposes. In this paper, we will focus on 3D scanning as a 

recording technique. To develop a reliable HBIM model, one of the challenges is to convert 

the point cloud data obtained from the 3D scanning into a three-dimensional information 

model as accurate as possible. Notwithstanding, certain drawbacks arise throughout this 

process, especially those concerning hardware and software. The files containing point 

clouds are massive because of the density of points and the dimensions of the point clouds 

themselves. As a result, the meshes created from these point sets entail large file sizes that 

must be managed using the available computer systems, which often show some 

computational limitations. For its part, software should experience further development in 

efficiency, since the current excessive time spent on processing is to be improved while 

visualising and performing operations with 3D objects. 

Currently, there are great efforts in the automation of the modelling of heritage buildings from 

the point clouds. The implementation of this so-called “Scan-to-BIM” is rather recent. Its 

development especially consists of creating algorithms to generate building surfaces and 

boundaries from point clouds, following procedural rules and constraints to extract features of 

different parts in the buildings and create parametric objects. Nevertheless, apart from 

implying a rough approximation to the geometry of the historical buildings, if these complex 

automatic algorithms are not integrated in commercial software, they may not be reachable 

at standard user level. 

As mentioned above, this paper deals with the important problem of transforming 3D point 

cloud data to an accurate Historical Building Information Model (Murphy et al., 2009; Nieto et 

al., 2016). To this end, it will assess the suitability and accuracy of existing methods and 

technologies for their use in the creation of these heritage models, for which a semi-

automatic procedure is proposed. It has to be noted that each historical building is unique. 

Moreover, its components can also be significantly different, not being part of standardised 

BIM libraries. Therefore, following that semi-automatic procedure, and using equipment and 

affordable hardware and software, building components will be individually extracted from 
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point cloud data according to the users’ heuristic knowledge, since they can easily identify 

the extent of a building component and its relation in space with adjacent elements. 

Subsequently, being accurately meshed by fitting their actual geometry, and finally converted 

into 3D solids, these components will be assembled for the digital historical reconstitution of 

the buildings in HBIM models. 

This paper also sheds light on the scientific literature as regards the virtual documenting of 

architectural and cultural heritage, and especially the use of Terrestrial Laser Scanning 

(hereinafter TLS) and its implementation in BIM software. Subsequently, the methodology 

explains the process to achieve 3D solid objects from TLS and Optical Scanning (OS) point 

clouds corresponding to the building components studied. To this end, the suitability of 

diverse 3D modelling software for the aim of this research is analysed. In addition, the 

implementation of building components in HBIM is developed, using as an example a 

singular historical building in Seville, Spain. Finally, the discussion of results and conclusions 

take place. 

 

2. Background 

The adoption of BIM in the AEC (Architecture, Engineering and Construction) industry is 

developing rapidly, however its implementation in facility management is slower, generating 

a need that the latest research approaches are beginning to satisfy (Volk et al., 2014). 

Considering that BIM implementation concern the building whole life-cycle, BIM becomes an 

interesting option to achieve efficiency in natural resources, costs and time (Volk et al., 

2014). In the case of heritage buildings, although there is a real need to maintain, restore 

and manage the historical assets, BIM has not been implemented to its full potential, albeit in 

recent years this situation is being reversed (Logothetis et al., 2015; Logothetis and 

Stylianidis, 2016). 
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Murphy et al. (2009) proposed a new information model (2D drawings and virtual layout) of 

historical structures from information obtained from laser scanning and digital images, 

including data related to the construction methods used. This new information model 

including historical information has been named the Historical Building Information Model 

methodology (Oreni, 2013; Hichri et al., 2013; Simeone et al., 2014; Nieto et al., 2014; 

Brumana et al., 2014; Barazzeti et al., 2015a; Chiabrando et al., 2016), an application of BIM 

to architectural heritage, which Murphy et al. (2013) defined as a novel prototype library of 

parametric objects. Following the work of Murphy, Nieto et al. (2016) underlined the 

importance of the interoperability of the information handled by the various disciplines 

involved in the process of conservation and patrimonial retrofitting. 

The virtual reconstitution of heritage assets is the logical step towards the implementation of 

BIM for the generation of as-built models (Tang et al., 2010, Hichri et al., 2013, Saygi and 

Remondino, 2013). Therefore, in order to avoid manual 3D modelling of elements, this virtual 

reconstitution needs to obtain an accurate HBIM model from 3D scanning data (Logothetis et 

al., 2015). However, it may be desirable to model elements depending on the needs of the 

project. For example, Boeykens et al. (2012) undertook the virtual reconstruction of a 

synagogue destroyed during the war by using BIM, which requires non-standardised 

elements and therefore not available in BIM software libraries. In this sense, Baik et al. 

(2014) proposed libraries of architectural elements created using laser scanning and 

imaging. These libraries have been used in different HBIM projects while reducing modelling 

time. Other authors, such as Nabil and Saleh (2014), dealt with the 3D reconstitution of 

museum artefacts using the Structure-From-Motion (SFM) photogrammetric technique, which 

is a low cost and easy-to-use option for 3D digitisation. 

For its part, TLS has been used successfully in detecting physical alterations in building 

structures during the construction and maintenance process: El-Hakim et al. (2004) 3D 

reconstructed large-scale heritage sites using image-based modelling and laser scanning; 

Barber et al. (2006) examined the application of TLS in architectural conservation; Olsen et 
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al. (2009) studied damage detection and volumetric change; Armesto-González et al. (2010) 

combined TLS with digital image processing to study damages in stone materials of historical 

buildings; Guarnieri et al. (2013) used TLS, total station, and photogrammetry for stability 

control monitoring with finite element model (FEM) analysis applied to an historical building, 

and also disclosed the difficulties of the use of the scanning technique; Pesci et al. (2013) 

estimated the error in TLS measurements to correctly interpret deformation traces in 

buildings after earthquakes; Chellini et al. (2014) also used TLS and FEM to evaluate the 

seismic vulnerability; Kim et al. (2015) undertook quality control using localising and 

quantifying concrete spalling defects; Lezzerini et al. (2016) mapped the façade stonework of 

a church in Pisa, Italy, using computer-aided design (CAD) and geographical information 

system (GIS) software with laser-scanning data and high-resolution images; or Mukupa et al. 

(2016), who proposed a three-stage processing model for structural deformation analysis, 

based on the literature review regarding the use of TLS in the detection of structural changes 

and deformation monitoring. 

Despite the widespread use of TLS in three-dimensional capture of existing heritage 

buildings, this technique is not used to obtain an accurate model of information from laser 

scanning. On the contrary, according to Xiong et al. (2013), in the field of engineering, 

surface models of mechanical parts have been converted into volumetric models by reverse 

engineering. 

In the field of 3D modelling applied to existing historical buildings for BIM platforms, it is 

stated that the usage of data collected using 3D scanning techniques entails the 

achievement of real (as-built) building models, which is performed by point cloud acquisition, 

segmentation, and element recognition (Tang et al., 2010; Huber et al., 2011; Xiong et al., 

2013; Murphy et al., 2013; Hichri et al., 2013; Thomson and Boehm, 2015; Chiabrando et al., 

2016, Baik et al., 2017). Pu and Vosselman (2009) did not use the term Scan-to-BIM 

expressly, perhaps because the concept of this automation was in its early stages. Their 

work consisted of the automatic reconstruction of façade openings and elements from 
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terrestrial laser scanning point cloud data. One year later, Hajian and Becerik-Gerber (2010) 

raised the point cloud inaccuracies of the 3D model inserted in BIM. Zeibak-Shini et al. 

(2012) developed a method to generate an information model of the deformed structures of 

existing buildings in case of earthquakes using laser scanning. After these initial works, 

several publications deal with the automation of the point cloud data (Jung et al., 2014; 

Previtali et al., 2014; Zhang and Zakhor 2014; Thomson and Boehm 2015), and more 

recently appeared an extensive state of the art of BIM applied to the historical building by 

Dore and Murphy (2017). Special attention can be given to Thomson and Boehm (2015), 

who used algorithms for the reconstruction of geometry from point clouds and their 

classification in Industry Foundation Classes (IFC) models. Hong et al. (2015) proposed a 

semi-automatic method for the creation of BIM in interiors, generating a 3D wireframe model 

combined with clutter data to achieve an as-built model in BIM. Jung et al. (2014) addressed 

point cloud segmentation and the elimination of its background noise, thus tracking the 

boundaries of figure contours. The segmentation was performed through the RANSAC 

algorithm (RANdom SAmple Consensus). The characteristics of planes and points were 

incorporated into BIM software, using them as references for the construction of the 

parametric elements. Zhang and Zakhor (2014) proposed an algorithm to automatically 

identify sectors of windows on exterior façades through the point cloud. Their research was 

limited to obtaining the results of segmentation rather than ease the processing of BIM 

objects. 

With all the above, one of the great advantages of the Scan-to-BIM automation procedures is 

saving time and human resources in the handling and management from the point cloud to 

the construction of the parametric objects of the model. However, Thomson and Boehm 

(2015) state that one of the issues to solve is the difficulty of representing irregular 

geometries in BIM platforms. In this sense, for example, there are deformations in historic 

buildings, as well as complex singular elements in churches and cathedrals. Bassier et al. 

(2016) modelled a heritage timber roof structure from TLS point cloud data, performing 
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manual segmentation, but did not specify the extent the meshes fit the point cloud to assess 

their accuracy. Having modelled the ensemble, they evaluated the structural behaviour of the 

3D model. This shows the relevance and utility of methodologies that model heritage 

buildings more realistically. 

Modelling elements from contours generated automatically from the point clouds by a series 

of algorithms, transfer the original, irregular, and detailed forms to excessively simplified 

shapes in some cases. The buildings can also be modelled in BIM by taking the point cloud 

as a reference, but the result is a theoretical model devoid of all the detailed deformations 

and thus of the real condition of the building. Moreover, even if this theoretical model can be 

deformed later, it is still a purely manual and prone to error task. For example, Fai et al. 

(2011) and Mill et al. (2013) integrated the point cloud data of the TLS - assisted by other 

techniques - into BIM software to create building models. For their part, Dore and Murphy 

(2013) modelled buildings semi-automatically from these point clouds using the GDL 

(Geometric Description Language) programming language of ArchiCAD software. On other 

occasions, certain architectural elements are implemented in information models, but not as 

a basis for the model itself, but as a complement to its visualisation (Nieto et al., 2016). Other 

research (Altuntas, 2015, Altuntas et al., 2016) has integrated point clouds from the image, 

either by time-of-flight (TOF) cameras or by photogrammetry, in the point clouds obtained by 

TLS applied to complex geometries in architectural heritage, but its purpose is usually the 

visualisation. (Oreni et al., 2014), Dore et al. (2015) approximated the geometry of their 

model by segmenting and sectioning the point clouds at different heights, creating surfaces 

that constitute enclosures with a certain degree of deformation. As a result, the generation of 

multiple sections could entail the omission of the graphical information -deformations in this 

case- that actually exists between them. 

In conclusion, there is a clear need to integrate accurate geometry into information models 

(HBIM). Collecting this kind of geometrical data is essential for the management of the 
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architectural heritage, whether for its restoration, maintenance or the dissemination of the 

richness that these historical assets entail. 

 

3. Methodology 

As stated by Hichri et al. (2013), the problem of achieving an ‘as-built’ model is solved by 

taking into account three fundamental steps: data acquisition, segmentation, and 3D 

modelling. 

In this project, the geometrical data was acquired using two different 3D scanning 

techniques: terrestrial laser scanning (TLS) and optical scanning (OS). The equipment used 

for this purpose was a Leica ScanStation C10 3D Laser Scanner (Leica Geosystems, 2016b) 

and a handheld Artec MHT 3D Scanner, respectively. The resolution of the former scanner 

was configured to reach 5 mm resolution, whereas the latter works with 1 mm. TLS was used 

to generate the global historical building model, containing those elements whose geometry 

– deformations – can be successfully recorded with lower resolution, namely walls, arches or 

column shafts. On the contrary, in the case of highly detailed building components, such as 

column capitals, door and window panels, the recording of their geometry was carried out 

using OS. This device can be also used to scan those elements that show characteristics or 

defects which should be recorded due to their impact on the model in terms of visualisation, 

classification or other uses. It is worth mentioning that the use of OS is limited to scanning 

specific, detailed building components, since its resolution causes the file size to increase. 

The aforementioned limitations in hardware and software make OS unable to record the 

geometry of the whole building. Figure 1 justifies the acquisition of OS data, which provides 

higher resolution that TLS for certain components. 

 <SET FIGURE 1> 

Figure 1. TLS and OS accuracy difference in a column capital. 
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In order to obtain reliable point cloud data of the buildings and their elements, the survey 

must ensure certain features in the 3D data. The volume of the elements has to be well 

defined by carrying out a full scan surrounding these elements. In the case of an incomplete 

scan of a building component – some faces only – will result in insufficient number of 

surfaces to create a closed volume. In addition, the point cloud should be dense in order to 

produce an accurate mesh. We can define an accurate mesh as a triangulated mesh that fits 

the point cloud from which it gets its geometry after a meshing process. 

As stated by Tang et al. (2010) the TLS point cloud has to be aligned in a common 

coordinate system; this is known as registration process. In the 3D laser scanning, three 

targets were located in the building to connect the readings of the device in each position. 

The scans overlapped so that they could be aligned using Leica Cyclone 9.1 (Leica 

Geosystems, 2016a), that also detects matching areas and creates cloud-to-cloud 

constraints automatically. Concerning other detailed structural components such as the 

column capitals, which were scanned using the OS, an alignment process with respect to 

TLS coordinate system must be undertaken. This OS mesh registration can be done after the 

components from TLS point cloud have been meshed to ease the identification of control 

points and edges. In order to guarantee the correct orientation of these components in the 

building, positional references must be recorded. Several control points for identification in 

the edges and vertexes of the arches are taken from the original OS meshes and also 

supported by photographs of the archwork, taken during the 3D survey. The orientation in the 

Z axis was based on these references or control points. For its part, the horizontal alignment 

of the capitals was conducted considering their XY plane in the upper base of the capitals 

according to the impost of the arches. Once the data are acquired, a three-step procedure 

takes a place. Figure 2 illustrates this method: 

<SET FIGURE 2> 

Figure 2. Flowchart explaining the ‘Point cloud — mesh — 3D solid object’ process. 
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It must be noted that this research proposes a semi-automatic procedure to achieve accurate 

HBIM models, comprising manual tasks and automatic processes. On the one hand, manual 

tasks are point cloud subdivision, brushing (if necessary), file conversion, implementation in 

BIM, and OS solids alignment and orientation. On the other hand, automatic processes 

include OS data recording, meshing, hole filling, repair and invert/unify normals, simplification 

(if necessary), and NURBS conversion. 

The first step in the methodology consists of importing the registered point cloud data into 

Leica Cyclone (in the case of the TLS) and then, based on heuristic knowledge, perform the 

point cloud subdivision into diverse building components in order to extract the desired 

sectors to study. 

The second action consists of importing these extracted TLS point sets into Rhinoceros 5 

(Robert McNeel & Associates, 2014) (hereafter Rhino), so that the meshing process can be 

performed using the Mesh Flow plug-in (Mesh Reverse, 2016). Concerning the OS, the point 

cloud data is automatically meshed in Artec Studio 10 Professional (Artec 3D, 2015) 

(hereinafter Artec), which is the native software of the OS device used; the first step of point 

cloud subdivision is then omitted in this case. Subsequently, it is worth using the ‘Repair’ tool 

in Artec or the ‘Check’ command in Rhino in some stages of this procedure – especially 

when the meshes are imported into different software – in order to verify that the meshes 

display valid geometry. Non-multiple faces, duplicated faces, naked or non-connected edges, 

and incoherent normals are examples of errors in meshes. The normal vectors of the 

triangles must face outwards (Unity Technologies, 2016) with respect to the volume; 

otherwise the object surface is not coherent. To this end, these normals must be unified 

(Robert McNeel & Associates, 2015) by running the UnifyMeshNormals command, thus 

inverting vectors aiming inwards. A hole filling process must be also undertaken so as to 

obtain watertight meshes to create volumes. This can be directly carried out in Rhino or 

using Artec, which additionally displays intuitive interface and tools to treat the mesh, namely 

‘eraser’, ‘smooth brush’ and ‘defeature brush’ to eliminate or reduce triangles out of context. 
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When facing large file sizes, the simplification of meshes is another option to consider. Its 

extent should be according to the details (geometry) and dimensions of the objects, 

inasmuch as a recognisable geometry must be guaranteed in the resulting simplified mesh. 

Id est, there should not be excessive information loss; otherwise the models would not be 

representative of the building components studied.  

The third step is to use Rhino to convert the resulting closed meshes into closed NURBS 

(Non Uniform Rational Basis-Splines) polysurfaces, which become the 3D solid objects of the 

elements scanned (as seen in the right column capital in Figure 1). This last step is 

conducted for both TLS and OS data, running the MeshToNURB command. Although this is 

a modelling method which meets the aims of this research, there are other options to obtain 

3D solid objects from the resulting meshes. These options include: 1) insert individual 

NURBS polysurfaces in AutoCAD Architecture 2015 (Autodesk, 2014) and run the 

SURFSCULPT command, which trims and combines a set of surfaces or meshes that 

completely enclose a volume to create a 3D solid; 2) import a watertight mesh in AutoCAD, 

convert it into a ‘mass element’ and then into a 3D solid object.  

These NURBS polysurfaces achieved differ from those NURBS created by Murphy et al. 

(2013), who built 2D profiles from parts of elements using Boolean operations and then 

repetition to conform the elements; or those by Oreni et al. (2014), who generated surfaces 

that arise from a spatial deformation of a grid of square tiled surfaces (patch surfaces) in 

which the positions of the control points determine the deformation. Again, NURBS have 

been used by Barazzetti et al. (2015b) and Fregonese et al. (2017) to create the elements. 

Especially in the vaults, several sections were extracted from their point clouds by 

interpolation in order to obtain the 3D models. Although all these methods approximate the 

shape of complex building components, these methods are not within the scope of this 

paper. In addition, the 3D solid models here obtained are not mathematically modelled on the 

basis of quadric surfaces such as paraboloids or cylinders, but they come directly from 

closed meshes from the segmented and managed TLS point clouds, using NURBS as a way 
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to become closed polysurfaces (solids). As illustrated in Figure 1, the surface of the solids is 

not regular. Their surface contains the deformations and peculiarities in the geometry of 

those elements of architectural heritage directly scanned using OS. 

In order to verify the results of the modelling process, Boolean operations – addition/union, 

subtraction/difference and intersection – can be performed between these 3D solid objects 

and primitive 3D entities such as cubes or cylinders. When the latter subtract certain volume 

from the former, the result should be also solid instead of hollow (this would be the case of a 

closed mesh). Besides, these operations can be applicable to combine solid objects in order 

to create the desired building component. 

Consecutively, the 3D solid objects are imported into BIM software applied to architectural 

heritage, by following the HBIM methodology. This is conducted piece by piece and 

according to the construction logic, reconstructing the original arrangement of the building 

components and the building itself. The import is solved considering the IFC open file format 

(buildingSMART International, 2017; ISO, 2013), due to its native compatibility with BIM 

software. In this way, for instance, the 3D solid objects of the column capitals could be 

converted into GSM parametric objects through GDL (Dore and Murphy, 2013), since 

ArchiCAD 20 (Graphisoft, 2016) (hereafter ArchiCAD) is the BIM software employed in this 

research. The parameters of those objects can be set, such as positional, physical, and 

structural properties; likewise visualisation can be customised according to the research or 

project needs. 

 

4. Software analysis and implementation 

In this section, the methodology above is implemented to show how the digital historical 

reconstitution of a historical building in HBIM can be performed. Prior to this, a comparison 

between the programs used for achieving the 3D meshes must be undertaken. 
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4.1 Comparative study: existing systems 

In this research, we have tested different software to compare their performance and 

suitability to convert point clouds from 3D scanning techniques to 3D meshes. In some 

cases, the meshing process did not produce suitable results. On the one hand, although this 

can be repaired afterwards, two different applications solved certain sectors of a mesh 

erroneously when the normals of some points aimed inwards, while in the rest of the points 

other normals targeted outwards (appropriate direction for volumes). In some cases, instead 

of meshing the point cloud accurately according to the original arrangement of the points, 

open source applications such as CloudCompare (Girardeau-Montaut, 2016) or MeshLab 

(Cignoni et al., 2008), executing the Surface Poisson Reconstruction command (Kazhdan 

and Hoppe, 2013), formed a bubble connecting the correct edges avoiding inverted normals 

or holes, which is not the desired result. The reason for this could be the lack of points in the 

scanner data due to inefficient surveys, or if a surface mesh – not a volume – is intended to 

be closed. On the other hand, another programme (SolidWorks by Dassault Systèmes and 

SolidWorks Corporation (2017)) created non-valid faces in the mesh, making it impossible to 

export the geometry in these sectors as valid 3D objects. Finally, another Rhino plug-in 

produced insufficient accuracy in the meshes. It was the case of MeshFromPoints (Figure 3), 

which did not adapt the resulting meshes (in green colour) to the point clouds (in yellow) as 

MeshFlow showed (in red). 

<SET FIGURE 3> 

Figure 3. Results from different meshing plug-ins in wireframe display mode. 

This means a loss in relief, which is not appropriate for recording deformations and 

irregularities in the building components. 

The difference in results using both plug-ins should be quantitatively specified. To this end, 

Table 1 briefly justifies the election of MeshFlow (1) against MeshFromPoints (2), being the 
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former chosen as the reference mesh in the comparison. In this research, we use the 

standard deviation, given the fact that this statistical measure quantifies the dispersion of 

data set values, corresponding with the vertexes whose location has changed with regard to 

the original – or reference – mesh when performing the meshing process. The comparison 

(Girardeau-Montaut, 2015) was performed using CloudCompare v. 2.7.0 between the two 

sample meshes. 

<SET TABLE 1> 

*This value accounts for the equality between the meshes compared. 

Table 1. Mesh feature comparison between different meshing plug-ins. 

As shown in Figure 3 and Table 1, in addition to increasing the surface of the meshes, 

MeshFromPoints reduces the amount of points and faces significantly.  

As stated in the previous section, only the point clouds from the handheld 3D scanner are 

directly meshed in Artec. On the contrary, those geometries captured by the 3D laser 

scanner are generated by importing the original point clouds in Rhino. Therefore, it is worth 

displaying the deviation – error or lack of similarity – between the resulting meshes using the 

aforementioned software in different file formats. Also used in the comparison above, a 

portion of an irregular stone surface (see Figure 4) was selected to evaluate the accuracy of 

commercial software packages. 

<SET FIGURE 4> 

Figure 4. Sample of irregular stone surface. 

The geometry of the stone surface was captured using the Artec MHT 3D scanner; therefore, 

this mesh was considered as the reference of the comparison. On the contrary, the 

compared mesh is generated by importing the original point cloud from that mesh in Artec 

into Rhino. This means that both point clouds were the same in the comparison. The 

orientation of the point cloud was established in Artec prior to exporting this point set to 
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Rhino, so that the two meshes had the same position for the comparison and alignment 

errors were then prevented. Table 2 shows the results of the comparison: 

<SET TABLE 2> 

*This value accounts for the equality between the meshes compared. 

**Standard deviation applicable in case of Artec STL – Rhino STL. 

Table 2. File formats and mesh feature comparison in the case of the stone surface. 

High standard deviation values (σ) represent practically identical compared mesh and 

reference mesh, since the most of the points between them maintain their position after the 

meshing process. On the contrary, reduced values of σ between these sample meshes entail 

a considerable number of vertexes distant from those points of the reference mesh (see value 

zero of the intervals in Figure 5). The exception is the multiple case of σ = 0, where the lack of 

deviation is due to the fact that all the vertexes in the compared mesh belong to the value zero; 

in this case, the empty distance intervals (i.e. containing no points) can be omitted. 

The standard deviation value between the sample meshes using Artec and Rhino in PLY 

format is illustrated in Figure 5 as vertex disposition for distance intervals. 

<SET FIGURE 5> 

Figure 5. Stone surface: mesh deviation comparison graph. 

As indicated in Figure 5, the major part of the points/vertexes are located in the area 

corresponding to the interval of distance equal to zero, since the distance between the 

vertexes of both meshes is null; this indicates where the two meshes are similar. In the 

graph, the arrangement of the rest of the points in the compared mesh depends on their 

distance from those in the reference mesh. This can be taken into consideration when 

analysing the comparison between the Artec PLY and Artec STL meshes (see Table 2). In 

this case, the extremely high standard deviation value of the Artec STL mesh is due to 

scarce, scattered points existing in the rest of intervals compared to the place where the 



3D modelling accuracy evaluation for HBIM 

17 
 

distances are null (where the major part of the vertexes is placed). This evidences the great 

similarity between the two meshes of the comparison. 

In addition, it is worth mentioning that an approximate symmetry between vertexes of both 

reference and compared mesh exists in the prior graph, as also occurs in Figure 7. Taking 

into account that Rhino was used to create the meshes from the point clouds obtained by 3D 

scanning techniques, it could be stated that this software balances the arrangement of the 

resulting faces (triangles) to achieve an approximate geometry. 

The intersection or overlap between the reference mesh and the compared one is shown in 

Figure 6, which displays in mm the histogram in Figure 5 and translates it into model space, 

so that the deviation between meshes can be directly visualised using colour code. 

<SET FIGURE 6> 

Figure 6. Comparison histogram: deviation between Artec PLY and Rhino PLY meshes. 

The aforementioned symmetry can also be noticed in Figure 6. The positive and negative 

values are arranged in accordance with the intervals in Figure 5. Those values are the faces 

or triangles belonging to the compared mesh above (green to red) or below (green to blue) 

the surface of the reference mesh. The intervals displayed in this histogram account for the 

arithmetic mean between those in Figure 5, since the latter figure contains more intervals 

and it is necessary to reduce their number. 

The comparison is also carried out in the case of the column capitals of the Pavilion. One of 

the capitals in the western façade is selected for this analysis (Table 3): 

<SET TABLE 3> 

* This value accounts for the equality between the meshes compared. 

**Standard deviation applicable in case Artec STL – Rhino STL. 

Table 3. File formats and mesh feature comparison in the case of the column capital. 
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Figure 7 displays the visual deviation between the new reference mesh (Artec PLY) and the 

compared one (Rhino PLY) in the case of the column capital. 

<SET FIGURE 7> 

Figure 7. Capital: mesh deviation comparison graph. 

Both graphs are created at the same scale in order to compare the differences visually. 

 

4.2 Implementation: the Pavilion of Charles V 

This research is based on the analysis of a heritage building in Seville, Spain. Placed in the 

gardens of the Alcázar, this Renaissance-characterised building is called the Pavilion of 

Charles V. It is part of the monumental complex of the Alcázar, which was included in the 

World Heritage List of UNESCO (1987) because of its great cultural value. The Pavilion 

(Figure 8) shows signs of the course of time and deferred maintenance due to numerous 

pathologies present in structure, floor and wall tiling. 

<SET FIGURE 8> 

Figure 8. Historical Building Information Model (HBIM) of the Pavilion of Charles V. Source: 

(Nieto et al., 2016). 

Nieto et al. (2016) developed the HBIM of the Pavilion without investigating the accuracy of 

the model nor quantifying the deformations which could occur during the process. 

Undoubtedly, the main target of this research was not to achieve an as-built model, but to 

provide the professionals involved in the conservation and restoration process with 

information to support the management of the historical asset. 

In contrast, this paper represents the real condition and thus the state of preservation of the 

Pavilion. To this end, the digital reconstitution focuses on the columns in the southern façade 

of this historical building, including their bases, shafts, capitals, arches and the beam above 
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the ensemble. For this purpose, the methodology explained in section 3 is followed: the point 

clouds from TLS are meshed, then converted into 3D solid objects, and subsequently 

imported in HBIM as IFC files, which allow the professionals to access the full information 

model. 

Figure 9 shows the result of the digital historical reconstitution by building components 

proposed in this paper. 

<SET FIGURE 9> 

Figure 9. 3D reconstitution and HBIM. Arches and columns in the Pavilion of Charles V. 

It is worth mentioning that, thanks to the registration of the TLS point cloud at the first stage, 

the original position of each extracted building component is already established when 

importing them as IFC files, since their origin is a common point set of the whole building.  

 

5. Discussion of results 

Prior to creating the HBIM model for the virtual reconstitution of architectural heritage, this 

paper addresses the important problem of mesh deformations, which occur during the 

process of transforming the point clouds to a mesh. The results of the comparison between 

meshes using different software show the following: 

- Considering the STL file format for 3D models, the outcomes of this comparison 

(see Table 2 and Table 3) reveal a reduction below 1% in the number of vertexes, 

faces and the mesh surface in Rhino when comparing the resulting meshes with 

those obtained through Artec software. Notwithstanding, a larger number of cases 

could provide a more accurate percentage. 

- Although the decrease in number of vertexes and faces in the STL file format seems 

to conclude that it is slightly less reliable in relation to geometry preservation, the 

extensive usage of STL and its compatibility among different software may lead to 
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consider this format rather than others in some cases. However in this research, 

not only was PLY file format used because of its invariable geometry, but also due 

to the reduced file size PLY entails against STL format. This fact is extremely 

important in processing time and memory usage while performing operations. 

- PLY, OBJ, FBX, 3DM, and 3DS file formats maintain the same features in 

meshes. 

- It can be noticed that the number of faces approximately doubles the number of 

vertexes in all cases. 

- Additionally, the area of the meshes remains constant using each application (Artec 

and Rhino, respectively), regardless the file format considered. 

- σ of STL format is slightly lower when meshing using Rhino, since the meshes 

differ; i.e., more vertexes in the compared mesh move from their equivalent 

vertexes in the reference mesh when using this software. 

On the other hand, the geometrical complexity of the stone surface may be determinant in 

the significant difference between the test conducted on its meshes and those from the 

column capital, which shows a more regular geometry. The similarity between the meshes of 

the column capital is clearly higher than those in the case of the portion of stone surface. The 

reason for this is that values for σ increase in the capital, which in turn means that there are 

fewer points at distances above and below the value zero.  

After analysing the results of the comparative study, and considering the scarce difference in 

geometry preservation between these applications (Artec and Rhino) for building 

components (below 1%), it could be stated that both are suitable software to be used to 

develop the proposal of this paper. 

For its part, processing time should be also discussed. Since manual tasks such as point 

cloud subdivision, brushing (if necessary), file conversion and implementation in BIM depend 
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on the user’s skills, it is worth showing the time consumed to perform automatic processes 

on a large sample point cloud: 

- Meshing: with 1341953 vertexes and 2683629 polygons, MeshFlow Rhino plug-in 

needed 4 minutes and 5 seconds to complete the meshing process from the 

original point cloud. 

- Filling missing data: Artec filled 28 gaps in 5 seconds, creating 780 and 1,869 new 

vertexes and polygons, respectively. 

- Simplification: 6 minutes and 22 seconds was the time Artec needed to 

significantly simplify the watertight mesh with 1,342,733 vertexes and 2,685,498 

polygons to obtain a new mesh with 99,984 points and 200,000 faces. 

- NURBS conversion: the process to convert that simplified closed mesh into closed 

polysurfaces with Rhino lasted 12 seconds. 

The duration of these automatic tasks depends on the 3D mesh multiple factors (i.e. file size, 

and original and preferred number of points and vertexes) and hardware. The system used 

for this research was an average portable computer with the following main specifications: 4-

core microprocessor at 3.3 GHz maximum; 16 GB DDRIII RAM memory at 1,600 MHz; and a 

PCI Express 2.0 graphic card with 336 GPU cores, 598 MHz graphics clock, and 3 GB 192-

bit GDDR5 memory at 1,500 MHz with bandwidth of 72 GB per second. Therefore, it can be 

stated that this proposal does not need powerful hardware to be carried out. 

Concerning the scanning process, the suitability of the equipment has to be assessed as 

regards accuracy and cost, depending on the requirements of the project. In addition, the 

process has to be perfectly planned by the technicians in charge so as to prevent lack of 3D 

data. The scanner must be placed in different positions to record information from the sides 

that would be hidden if the device only aimed the surface from one angle. In short, the survey 

has to achieve volumes rather than surfaces when possible. 
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With this methodology, signs of collapse in walls, beam deflections, lack of verticality of 

columns, and other pathologies are registered within the models. As displayed in Figure 10, 

the north-western acanthus leaf of a Corinthian column capital of the Pavilion is damaged 

and therefore captured in its HBIM reconstitution model. 

<SET FIGURE 10> 

Figure 10. Defect in column capital 5 (ID tag in HBIM: Capital_5). 

Although the level of detail – original or simplified according to the needs of the project – has 

to be taken into consideration, the singularities of a historical building and its uniqueness can 

be registered and referenced in the HBIM model. 

This research outlines a procedure applied to architectural heritage. Nevertheless, the 3D 

reconstruction can also meet the aims of archaeological enquiries, as proved with the sample 

meshes of the stone surface analysed. Certainly, 3D surveys will not produce closed 

volumes in this case, but Boolean operations can be undertaken to obtain solid models out of 

the point cloud data. 

 

6. Conclusions 

The emergence of new technologies represents great advances in order to improve the 

quality and management of complex 3D building information. This paper proposes a new 

approach to analyse the accuracy of 3D models resulting from point cloud data using existing 

commercial BIM tools. In this paper we have suggested a semi-automatic method that can 

improve the accuracy of the historical building information models of heritage assets. This 

improvement is driven by the quantification of the deformation of the meshes we have 

presented in this paper. 

One of the main advantages of this research lies in the utilisation of affordable, easy-to-use 

commercial software packages, that are available in most of architectural offices, research 
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centres and universities. This will allow professionals and researchers to apply the proposed 

methodology to other cases where the resources are limited or the buildings to study are 

conform to the current limitations in hardware. Although this research considers the 

subdivision of the entire point cloud of the building into easy-to-handle elements, further 

development in hardware and software including computation power, efficiency, processing 

time, and memory usage are essential in the case of larger buildings. 

The proposed methodology supports the 3D modelling of singular, complex historical building 

components, which do not exist as standard 3D components in the libraries that BIM 

software use, as seen in the work by Boeykens et al. (2012).  

One of the main goal of this research is the 3D reconstitution of the architectural heritage in a 

rigorous HBIM model. This will allow the generation of reliable models to support further 

building analysis through simulations (Clemente et al., 2006; Murcia-Delso et al., 2009; 

Barazzetti et al., 2015b; Bassier et al., 2016; Compán et al., 2017) such as the Finite 

Element Method (FEM) to analyse the structure of the historical building (Zienkiewicz and 

Taylor, 1971; Roca et al., 2010). Examples of these simulations include: collapse risk 

analysis due to earthquakes, structure deformation, energy transmission, or those of a 

different nature (Pineda and Iranzo, 2017). The HBIM achieved in this paper can be used as 

a reference for the restoration of the building and its components, taking into account their 

exact position, geometry, and physical and technical characteristics. These components can 

be catalogued for possible use in case of future building degradation. 

Further research in this field could focus on calculating the similarity among multiple samples 

of architectural heritage (Moyano et al., 2017), by using the 3D solid objects created through 

the methodology presented in this paper. The aim would be to assign the authorship of both 

the design and the construction of historical building components, based on the analysis of 

their geometry and historical-graphical documentary sources. 
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Finally, it should be mentioned that BIM platforms, in addition to managing patrimonial 

assets, allow their dissemination to the general public through multimedia contents such 

using virtual reality. It is then convenient to place these tools at the service of society, 

highlighting the importance of their application for the preservation of our architectural 

heritage. 
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Figure captions (as a list) 

Figure 1. TLS and OS accuracy difference in a column capital. 

Figure 2. Flowchart explaining the ‘Point cloud — mesh — 3D solid object’ process. 

Figure 3. Results from different meshing plug-ins in wireframe display mode. 

Figure 4. Sample of irregular stone surface. 

Figure 5. Stone surface: mesh deviation comparison graph. 

Figure 6. Comparison histogram: deviation between Artec PLY and Rhino PLY meshes. 

Figure 7. Capital: mesh deviation comparison graph. 

Figure 8. Historical Building Information Model (HBIM) of the Pavilion of Charles V. Source: 

(Nieto et al., 2016). 

Figure 9. 3D reconstitution and HBIM: arches and columns in the Pavilion of Charles V. 

Figure 10. Defect in column capital 5 (ID tag in HBIM: Capital_5). 
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Table captions (as a list) 

Table 1. Mesh feature comparison between different meshing plug-ins. 

Table 2. File formats and mesh feature comparison in the case of the stone surface. 

Table 3. File formats and mesh feature comparison in the case of the column capital. 
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Figures with captions (individual sheets) 

 

Figure 1. TLS and OS accuracy difference in a column capital.  
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Figure 2. Flowchart explaining the ‘Point cloud — mesh — 3D solid object’ process. 
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Figure 3. Results from different meshing plug-ins in wireframe display mode. 
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Figure 4. Sample of irregular stone surface. 
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Figure 5. Stone surface: mesh deviation comparison graph. 
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Figure 6. Comparison histogram: deviation between Artec PLY and Rhino PLY meshes. 
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Figure 7. Capital: mesh deviation comparison graph. 
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Figure 8. Historical Building Information Model (HBIM) of the Pavilion of Charles V. Source: 

(Nieto et al., 2016). 
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Figure 9. 3D reconstitution and HBIM. Arches and columns in the Pavilion of Charles V. 
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Figure 10. Defect in column capital 5 (ID tag in HBIM: Capital_5). 
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Tables with captions (individual sheets) 

Software 

and file 

format 

Number of 

vertexes 

Number of 

faces 

Mesh 

surface 

(mm2) 

Mesh surface 

per triangle 

(average) (mm2) 

Standard 

deviation (σ) 

1 PLY 2,593,806 1,296,903 119,598 0.0922182 0* 

2 PLY 174,519 343,911 121,791 0.3541350 1183.550375 

*This value accounts for the equality between the meshes compared. 

Table 1. Mesh feature comparison between different meshing plug-ins. 
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Software 

and file 

format 

Number of 

vertexes 

Number of 

faces 

Mesh 

surface 

(mm2) 

Mesh surface 

per triangle 

(average) (mm2) 

Standard 

deviation (σ) 

Artec PLY 653,667 1,296,903 119,598 0.0922182 0* 

Artec OBJ 653,667 1,296,903 119,598 0.0922182 0* 

Artec FBX 653,667 1,296,903 119,598 0.0922182 0* 

Artec STL 653,487 1,296,544 119,598 0.0922437 22,975.4068 

Rhino PLY 645,900 1,285,697 119,474 0.0929255 9,921.7959 

Rhino OBJ 645,900 1,285,697 119,474 0.0929255 9,921.7959 

Rhino FBX 645,900 1,285,697 119,474 0.0929255 9,921.7959 

Rhino STL 645,759 1,285,416 119,474 0.0929458 22,772.9281** 

*This value accounts for the equality between the meshes compared. 

**Standard deviation applicable in case of Artec STL – Rhino STL. 

Table 2. File formats and mesh feature comparison in the case of the stone surface. 
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Software 

and file 

format 

Number of 

vertexes 

Number of 

faces 

Mesh 

surface 

(mm2) 

Mesh surface 

per triangle 

(average) (mm2) 

Standard 

deviation (σ) 

Artec PLY 668,929 1,337,825 517,128 0.386544 0* 

Artec OBJ 668,929 1,337,825 517,128 0.386544 0* 

Artec FBX 668,929 1,337,825 517,128 0.386544 0* 

Artec STL 668,798 1,337,563 517,128 0.386620 23,384.0031 

Rhino PLY 667,110 1,331,274 515,721 0.387389 20,182.5763 

Rhino OBJ 667,110 1,331,274 515,721 0.387389 20,182.5763 

Rhino FBX 667,110 1,331,274 515,721 0.387389 20,182.5763 

Rhino STL 665,280 1,328,368 515,721 0.388237 23,280.6608** 

* This value accounts for the equality between the meshes compared. 

**Standard deviation applicable in case Artec STL – Rhino STL. 

Table 3. File formats and mesh feature comparison in the case of the column capital. 

 


