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Abstract—Hierarchical fuzzy systems (HFSs) have been shown
to have the potential to improve interpretability in fuzzy logic
systems (FLSs). In recent years, a variety of indices has been
proposed to measure the interpretability of FLSs such as the
Nauck index and Fuzzy index. However, interpretability indices
associated with HFSs have not so far been discussed. The
structure of HFSs, with multiple layers, subsystems, and varied
topologies, is the main challenge in constructing interpretabil-
ity indices for HFSs. Thus, the comparison of interpretability
between FLSs and HFSs—even at the index level—is still the
subject to an open discussion. This paper begins to address these
challenges by introducing extensions to the FLS Nauck and Fuzzy
interpretability indices for HFSs. Using the proposed indices, we
explore the concept of interpretability in relation to the different
structures in FLSs and HFSs. Initial experiments on benchmark
datasets show that based on the proposed indices, HFSs with
equivalent function to FLSs produce higher indices, i.e. are more
interpretable than their corresponding FLSs.

I. INTRODUCTION

One of the strengths of Fuzzy Logic Systems (FLSs) is
their interpretability [1], particularly in applications such as
knowledge extraction and decision support [2], [3]. However,
key challenges remain around FLS interpretability, including
the curse of dimensionality: the number of required rules
commonly increases exponentially with the number of input
variables [4]. This challenge is also known as rule explosion
which may reduce the transparency and interpretability of
FLSs [5]. One effective way to deal with this problem is
through the use of a special type of FLS, namely hierarchical
fuzzy systems (HFSs) [6]–[11].

HFSs were introduced by Raju [6] as an approach to over-
come the curse of dimensionality which arises in conventional
FLSs. In HFSs, the original FLSs are decomposed into a
series of low-dimensional FLSs—fuzzy logic subsystems (see
Section II-B). Moreover, the rules in HFSs commonly have
antecedents with fewer variables than the rules in FLSs with
equivalent function, since the number of input variables of
each subsystem is lower [12], [13]. Thus, HFSs tend to reduce
rule explosion, thus minimizing complexity, and improving
model interpretability. So far, the potential of HFSs to support
good interpretability in FLSs has not been explored in detail,
with only a small number of works considering it [5], [14]–
[17].

In this paper, an extension of the two most common FLS
interpretability indices, namely Nauck index and Fuzzy index,
to HFSs is proposed, with a specific focus on the complex
structure of HFSs such as having multiple layers, subsystems
and varied topologies.

This paper is organized as follows; Section II discusses
background on interpretability in FLSs and HFSs, in particular,
the common interpretability indices: the Nauck and Fuzzy
index, as well as providing an overview of the challenges
in developing interpretability indices for HFSs. Section III
introduces the extension of the interpretability indices from
FLSs to HFSs, demonstrated with synthetic examples. Finally,
Section IV, V and VI present experiments, results, conclusion
and future works.

II. BACKGROUND

A. Interpretability of FLS
Interpretability indicates how easily an FLS can be un-

derstood by human beings [18]. In recent years, the interest
of researchers in obtaining more interpretable fuzzy models
has increased. However, the choice of an appropriate in-
terpretability measure is still an open discussion due to its
subjective nature and the large amount of factors involved.
Substantial research on interpretability measures [19]–[27]
proposed interpretability indices for FLSs. The most common
interpretabilty indices are Nauck index and Fuzzy index.

1) Nauck index:
Nauck index is a numerical index introduced by Nauck [21]

in order to measure fuzzy rule-based classification systems. In
this paper, we are using it as a useful index for assessing the
interpretability of FLSs. It is computed as the product of three
terms:

Nauck index = comp× cov × part. (1)

• comp represents the complexity of FLSs measured as the
number membership functions (MFs) of output variables
divided by the number of input variables in FLSs rules.
It is computed as

comp = m/

r∑
i=1

ni (2)



Fig. 1. Membership function of service that shows complete coverage.

where m is the number MFs of output variables, r is the
number of rules and ni is the number of input variables
used in the ith rule.

• cov is the coverage degree of the fuzzy partition. If Xi

is the domain of ith input variable partitioned by pi MFs
{µ(1)

i ,. . . ,µ(pi)
i }, then cov is computed as

covi =

∫
Xi
ĥi(x) dx

Ni

ĥi(x) =

{
hi(x) if 0 < hi(x) < 1
pi−hi(x)

pi−1 , otherwise

hi(x) =

pi∑
k=1

µ
(k)
i (x),

(3)

where hi(x) is the total MFs of ith input variable with
Ni =

∫
Xi

for continuous domains. The integral in (3) is
replaced by a sum for discrete finite domains with Ni =
|X| . Then, cov =

∑r
i=1 covi/ni, denotes the average

normalized coverage for all input variables.
• part stands for the partition index which is computed as

the inverse of the number of MFs minus one for each
input variable;

parti =
1

pi − 1
, (4)

where pi is the number of MFs in the ith input vari-
able. Then, part =

∑r
i=1 parti/ni, denotes the average

normalized partition index for all input variables.
An FLS model is said to be less interpretable when its Nauck

index is closer to 0 and more interpretable when Nauck index
is closer to 1. To illustrate how the interpretability index is
generated by Nauck index, we consider the Waiter-Tipping
example [28] which is frequently used as a benchmark. The
rule base of the example is as follows:

IF service is poor THEN tip is cheap,
IF service is good THEN tip is average,
IF service is excellent THEN tip is generous.

The Nauck index can be generated as:

comp =
3

1 + 1 + 1
= 1

cov = 1(i.e., as shown in Fig. 1)

part =
1

3− 1
(only one input variable is used)

TABLE I
FUZZY INDEX OF TIPPER EXAMPLE

Total number of rules : 3
Total number of inputs in all rules : 3
Rule with 1 input : 3
Rule with 2 inputs : 0
Rule with 3 inputs or more : 0
Average linguistic terms define by inputs : 3

Fuzzy index : 0.647

Nauck index = comp× cov × part = 0.5.

2) Fuzzy index:
As discussed in [22], the Fuzzy index, which is inspired by

Nauck’s index is proposed in interpretability assessment. Six
variables are taken as input of a fuzzy system namely; (i) total
number of rules, (ii) total number of input variables in all the
rules, (iii) number of rules which use one input variable, (iv)
number of rules which use two input variables, (v) number
of rules which use three or more input variables, (vi) average
number of linguistic terms defined for each input variable.

The Fuzzy index itself is computed as the result of a
hierarchical FLS (see Section II-B) which consists of four
linked knowledge bases, namely: RB1, RB2, RB3 and RB4.
RB1 gives an estimation of the rule base dimension based on
the total number of rules and input variables. At the same
time, the rule base complexity is evaluated at RB2 according
to the number of input variables used by the rules. Then,
RB3 combines rule base dimension and complexity, and as a
result it yields a rule base interpretability index. Lastly, RB4
integrates the rule base interpretability index and the average
number of linguistic terms defined by input variable.

A Fuzzy index closer to 0 implies that the FLS model is less
interpretable. Meanwhile, a Fuzzy index closer to 1 implies
higher interpretabality. To show how this index is generated,
we use the same Waiter-Tipping example rule base. The Fuzzy
index calculation is summarized in Table I.

B. Hierarchical Fuzzy Systems

Definition 1 : HFSs are characterized by composing the
input variables into a collection of low-dimensional FLSs—
fuzzy logic subsystems [6], [7]. HFSs can be illustrated as a
cascade structure where the output of each layer is considered
as an input to the following layer as shown in Fig. 3.

Definition 2 : HFSs can be viewed as a functional decom-
position of FLSs [29]. For instance, FLS and HFS as shown
in Fig. 2 and Fig. 3 respectively can be presented, from a
functional point of view as

y = F (x1, x2, x3) =⇒ y = f2(x3, f1(x2, x1)).

A system that goes from one layer as shown in Fig. 2 to two
layers as in Fig. 3 has fewer rules than the one in one layer.
The most extreme reduction of rules will be if the structure
of HFS has two input variables for each low dimensional FLS
and has (n − 1) layers [6]. If we define m fuzzy sets for
each input variable, including the intermediate output variables
y1, ..., yn−2, the total number of rules (R) is a linear function



Fig. 2. Fuzzy Logic System Fig. 3. Hierarchical Fuzzy System

[8] of the number of input variables n and can be expressed
as:

R = (n− 1)m2. (5)

In conventional FLSs, the number of rules increases expo-
nentially with the increase in the number of input variables
[6], [30]. Supposed there are n input variables and m fuzzy
sets for each input variable, then mn rules are needed to
construct a complete fuzzy system with fully specified rule
base (using the “AND” logical connective). For example, Fig.
2 and Fig. 3 show a FLS and HFS with 3 input variables
(n = 3) and, assuming that 3 fuzzy sets (m = 3) are defined
for each input variable, the total number of rules for this FLS
is mn = 33 = 27 whereas for the HFS, the total number of
rules is (n−1)m2 = (3−1)32 = 18 i.e. it is clear that the total
number of rules is always lower or equal when employing a
HFS.

Previous research has shown that HFSs have been used to
improve interpretability [5], [14]–[17]. However, to the au-
thors’ knowledge, no one has investigated how interpretability
can similarly be measured using indices in HFSs. In this paper,
an extension to the interpretability indices from FLSs to HFSs
is proposed. In doing so, the following challenges of HFSs will
be explored:

1) Aggregation:
The first challenge is the choice of aggregation technique

to aggregate the information or values provided at different
subsystems in HFSs. For example, assume that we obtain two
values of an interpretability index which are IFLSA

and IFLSB

calculated for subsystem FLSA and FLSB as shown in Fig.
3. In order to calculate the interpretability index in HFSs, we
need to determine the method to aggregate individual values
such as IFLSA

and IFLSB
. However, to determine the aggre-

gation method in HFSs, we have to consider two situations.
The first is the aggregation process between the layers and the
second is the aggregation process in the same layer.

2) Design Decision on Topology & Layering:
As mentioned in Definition 1, HFSs are produced by

decomposing the input variables in FLSs into multiple low-
dimensional FLSs. By doing this, several layers are produced
in HFSs. Based on the same input variables, HFSs may be
produced using different topologies, e.g., serial and parallel
HFS [12]. The parallel HFS can have more than one low-
dimensional FLS per layer, while serial HFSs use strictly one
FLS per layer as shown in Fig. 4 and Fig. 5 respectively.
Thus, these topologies commonly have a different number of
layers. For example, Fig. 4 and Fig. 5 show two different
HFS topologies using the same four input variables namely

Fig. 4. Parallel HFS with 2 layers.

Fig. 5. Serial HFS with 3 layers.

x1, x2, x3 and x4. Both HFSs topologies use the same number
of subsystems, but with different numbers of layers in their
structure.

III. INTERPRETABILITY INDICES FOR HFSS

A. Motivation

In Section II-B, some challenges in proposing the inter-
pretability indices in HFSs were presented. From these, several
questions arise, including: “What is the best aggregation
technique across and within layers?”, and “How should new
interpretability indices deal with different topologies?”. Tak-
ing these questions into consideration, we propose an initial
solution by extending both the Nauck and Fuzzy indices from
their FLS form to HFSs.

B. The Proposed Interpretability Indices for HFSs

As an initial step, in this paper, we extend the Nauck and
Fuzzy indices by proposing a general extension for such in-
dices from FLSs to HFSs. We refer to the general extension as
HFSi. By considering the challenges that have been discussed
in Section II-B, we propose an aggregation strategy capturing
the HFS topology with layer-weights indicating the weight
associated with each layer. In this paper, we only focus on
HFSs with one output variable and no cyclic connections
between internal FLSs. In this context, HFSi is computed as
follows:

HFSi =
n∑

i=1

(li

mi∑
j=1

Eij/mi), (6)

where Eij is for example the Nauck (N ) or Fuzzy (F ) index
of a subsystem j at layer i, li is the associated weight to the
layer i of the HFSs, mi is the number of subsystems located
at the layer i, and n is the number of layers.

Layer-weights, li are associated to each subsystem accord-
ing to their layer. In this paper, we propose a layer-weighting
which has the following properties:



(i)
∑n

i=1 li = 1, i.e. the summation value of all layer-
weights li should be equal to 1 regardless the number
of layers n.

(ii) l1 > l2 > ... > ln, i.e. the layer-weights, li are
arranged in descending order according to the challenges
in Section II-B. As discussed in [6], [7], most HFSs
structure is formed by having the most influential input
variables to the first layer of the hierarchy, the next most
important inputs to the second layer, and so on.

In order to achieve the above properties, li is proposed as:

li =
2(n− i+ 1)

n(n+ 1)
, i = 1, ..., n. (7)

A HFS model is less interpretable when the HFSi is close
to 0 and more interpretable when HFSi is close to 1. In the
following section, we will explore the features of the HFSi for
the cases of the Nauck and Fuzzy interpretability indices by
using a real-world example.

IV. EXPERIMENTS

As a demonstration, we have used an example of a seesaw
control application which enables the systematic comparison
between conventional FLS and HFS in order to solve the
problem of balancing in seesaw. The involved parameters of
seesaw are the distance of the cart (x1), the angle that the
wedge makes with the vertical line (x2), the height of the
wedge (x3) and center of mass of the wedge (x4) as in [30] .

A. Seesaw control application
The seesaw control example from Lee et al. [30] is used.

As reported in their study, this system has 4 input variables
(n = 4) namely x1, x2, x3 and x4 with 3 fuzzy sets (m = 3):
pb, ze and nb are defined for each input variable. The total
number of rules for this standard FLS of a seesaw control is
obtained by mn = 34 = 81 rules and can be illustrated as
follows:

• IF x1 is pb AND x2 is pb AND x3 is pb AND x4 is pb
THEN y is nb,

• IF x1 is pb AND x2 is pb AND x3 is pb AND x4 is ze
THEN y is nb,

• IF x1 is pb AND x2 pb AND x3 is pb AND x4 is nb
THEN y is nm,
...

• IF x1 is nb AND x2 is pb AND x3 is nb AND x4 is nb
THEN y is pb.

In this study, two types of HFS topologies (parallel and
serial) were chosen and developed using the Fuzzy Toolbox
in the R programming language [31].

Table II shows the interpretability measurements of the
standard FLS and all subsystems of the HFSs for the seesaw
example for both the Nauck and Fuzzy indices. The aim of
this experiment is to explore how the interpretability indices
behave for several HFS toplogies. Then, the overall results
of the interpretability indices are compared with those of the
conventional FLS.

1) Parallel implementation of the Seesaw Control
Figure 6 shows the interpretability indices measured for
each subsystem in the parallel HFS implementation of
the seesaw control by using the Nauck and Fuzzy indices
respectively. Due to the limited space in this paper, we
only provide one sample structure of the rules for this
parallel HFS. The rules for subsystems FLS1, FLS2, and
FLS3 can be illustrated as follows:
For FLS1 :

• IF x1 is pb AND x2 is pb THEN y1 is pb,
• IF x1 is pb AND x2 is ze THEN y1 is pb,

...
• IF x1 is nb AND x2 is nb THEN y1 is nb.

For FLS2 :

• IF x3 is pb AND x4 is pb THEN y2 is pb,
• IF x3 is pb AND x4 is ze THEN y2 is pb,

...
• IF x3 is nb AND x4 is nb THEN y2 is nb.

For FLS3 :

• IF y1 is pb AND y2 is pb THEN y is pb,
• IF y1 is pb AND y2 is ze THEN y is pm,

...
• IF y1 is nb AND y2 is nb THEN y is nb.

The values of Nauck and Fuzzy indices for the three
subsystems are N1 = 0.083, N2 = 0.083, N3 = 0.194,
F1 = 0.493, F2 = 0.493 and F3 = 0.605 (the details
are shown in Table II). There are two layers in this HFS
(n = 2). The values of the layer-weights using equation
(7) are l1 = 0.667 and l2 = 0.333. According to equation
(6), the suggested interpretability indices of this HFS are:

HFSi =
n∑

i=1

(li

mi∑
j=1

Eij/mi)

= l1(N1 +N2)/2 + l2(N3/1)

= 0.667(0.083 + 0.083)/2 + 0.333(0.194) = 0.120

HFSi =
n∑

i=1

(li

mi∑
j=1

Eij/mi)

= l1(F1 + F2)/2 + l2(F3/1)

= 0.667(0.493 + 0.493)/2 + 0.333(0.605) = 0.530

2) Serial implementation of the Seesaw Control
Figure 7 shows the interpretability indices measured for
each subsystem in the serial HFS implementation of the
seesaw control by using the Nauck and Fuzzy indices
respectively. Similar to the parallel case, the index values
obtained for subsystems 1, 2 and 3 are N1 = 0.083,
N2 = 0.083, N3 = 0.194, F1 = 0.493, F2 = 0.493 and
F3 = 0.605 (the details are shown in Table II). There are
three layers in this HFS (n = 3). The layer-weights using
equation (7) are l1 = 0.5, l2 = 0.333 and l3 = 0.167.
According to equation (6), the suggested interpretability



TABLE II
INTERPRETABILITY OF SEESAW CONTROL APPLICATION USING NAUCK AND FUZZY INDEX

Fuzzy Models Nauck index Fuzzy index

comp cov part Index NOR NOI Rule
1

Rule
2

Rule
3 Term Index

FLS :
Seesaw System 0.022 1 0.5 0.011 81 324 0 0 81 3 0.241

Parallel HFS
Subsystem 1 0.167 1 0.5 0.083 9 18 0 9 0 3 0.493
Subsystem 2 0.167 1 0.5 0.083 9 18 0 9 0 3 0.493
Subsystem 3 0.389 1 0.5 0.194 9 18 0 9 0 3 0.605
Overall 0.120 0.530

Serial HFS
Subsystem1 0.167 1 0.5 0.083 9 18 0 9 0 3 0.493
Subsystem 2 0.167 1 0.5 0.083 9 18 0 9 0 3 0.493
Subsystem 3 0.389 1 0.5 0.194 9 18 0 9 0 3 0.605
Overall 0.102 0.512

∗NOR = Number of rules, NOI = Number of input in all rules, Rule 1 = Rule with 1 input, Rule 2 = Rule with 2 inputs, Rule 3 = Rule with 3 inputs or
more, Term = Average linguistic terms defined by inputs.

Fig. 6. Interpretability of Parallel HFS using Nauck index (N) and Fuzzy
index (F).

indices of this HFS are:

HFSi =
n∑

i=1

(li

mi∑
j=1

Eij/mi)

= l1((N1/1) + l2(N2/1) + l3(N3/1)

= 0.5(0.083) + 0.333(0.083) + 0.167(0.194) = 0.102

HFSi =
n∑

i=1

(li

mi∑
j=1

Eij/mi)

= l1((F1/1) + l2(F2/1) + l3(F3/1)

= 0.5(0.493) + 0.333(0.493) + 0.167(0.605) = 0.512

V. RESULTS AND DISCUSSION

The proposed HFSi extension was applied to the example
of a seesaw control application for both the Nauck and Fuzzy
indices. The overall interpretability measurements of FLS and
HFSs were summarised and are shown in Fig. 8.

For the discussed examples, the computed values of in-
terpretability index in HFSs are larger compared to the FLS
regardless of its type (i.e. parallel or serial HFS). As captured

Fig. 7. Interpretability of Serial HFS using Nauck index (N) and Fuzzy index
(F).

Fig. 8. Interpretability measurement between FLS and HFSs of seesaw control
application.

in Fig. 8, the extended Nauck indices for parallel serial HFSs
are larger than those of the FLS i.e. 0.120 and 0.102 respec-
tively. Figure 8 also shows the same pattern with the extended
Fuzzy indices with values of 0.530 and 0.512 respectively.
We note that in this example of HFSs , the values of the
interpretability indices of parallel HFSs are larger than for
serial HFSs as shown in both extended interpretability Nauck
and Fuzzy indices of HFSi.

The results generated for the extended indices follow in-



tuition in the sense that one expects better interpretability for
HFSs than for their FLS counterparts. Clearly, the aggregation
strategy adopted in this paper is not unique and a number
of different aggregation strategies may be appropriate. In the
same context, based on the initial results, it is clear that
further work is required to establish ground truth on what the
appropriate interpretability index should be, so that it reflects
or approximates the interpretability of a system as perceived
by an actual human user.

VI. CONCLUSIONS

Intuitively, HFSs have the potential to improve interpretabil-
ity in FLSs. However, interpretability indices associated with
HFSs have not so far been discussed. This paper is an initial
step. Current research on interpretability are in general aimed
at FLSs. On the other hand, HFSs have been introduced in
part to facilitate interpretability. In this paper, as a first step to
study the interpretability of HFSs, we propose an extension of
FLS interpretability indices and apply it to the popular Nauck
and Fuzzy indices.

In initial experiments, the extended indices produced higher
results for HFSs than for their equivalent (in functionality) FLS
counterparts. This follows intuition as HFSs have been credited
with better interpretability compared to FLSs. In the future, a
key part of our work will be to conduct experiments with real
users to establish the perceived interpretability and to use it to
validate and inform appropriate interpretability indices. At the
moment, beyond the initial motivation of HFSs, it for example
is not clear whether a larger number of layers is necessarily
easier to interpret than a larger number of single-layer rules.

Future research will also focus on leveraging the informa-
tion gained from studying interpretability in its human context
to inform index aggregation in HFSs. Further, other aspects
of interpretability will be explored, including the linguistic
meaning of fuzzy sets and the logical complexity of the rules
i.e. the impact on interpretability of for example using AND,
rather than OR.
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