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Abstract

Despite the abundance of human-centred research to support

domestic human behaviour monitoring in various vital applications,

there are still notable limitations to deploying such systems on a

broader scale. The main challenge is the trade-off between privacy,

performance, and cost of assistive technologies to support older

adults to live independently in their own homes. For example, the

traditional vision-based sensing approach provides excellent

performance while violating human privacy in domestic

environments. In contrast, the ambient sensing approach, e.g.,

employing Passive Infra-Red (PIR) sensors, maintains human

privacy but suffers significant performance hindrances in realistic

scenarios such as multi-occupancy environments.

This research proposes to utilise the Thermal Sensor Array (TSA)

to adjust the trade-off between privacy and performance in domestic

environment applications. The rationale behind proposing this sensor

for human behaviour monitoring applications is its claimed advantages

to perform well while maintaining human privacy, low-cost, and non-

contact capabilities. Nevertheless, there has not been sufficient related

work to empirically validate the hypothesis of using this low-resolution

imager in domestic monitoring. Furthermore, most published works

that use the TSA have not yet reached the deployment stage due

to the TSA sensing constraints. In particular, TSA is sensitive to

environmental thermal noise, and its Field of View (FoV) is not wide

enough to cover a large inspection area. Intelligent algorithms should

be employed in order to avoid these limitations.

The focus of this thesis is to investigate the human physiological and

behavioural thermal patterns for privacy-preserving human



behaviour monitoring to support the independent living of older

adults in a multi-occupancy environment by using TSA. This will be

achieved through signal processing and machine learning techniques.

To achieve this aim, the research methodology is drawn into two

main directions. First, human physiological processing of the human

thermal signal. Second, human behavioural processing of the human

motion signal. This drawn methodology resulted in four main novel

contributions.

The first novel contribution of this research is to propose an

adaptive segmentation of the human physiological presence and

count the number of people from different sensor placements, indoor

environments, and human-to-sensor distance. The second

contribution is to extract localisation knowledge of the human

physiological appearance in terms of human-to-sensor distance and

human-to-human distance. Extracting human localisation knowledge

is also applicable in other applications such as caregivers and care

time monitoring. The third contribution is to fuse multiple TSAs to

cover a wide inspection area, e.g., private or care homes. Hence,

objects that appear in the low-resolution thermal images acquired

from TSA have low intra-class variations and high inter-class

similarities, making the identification of the overlapping regions

through matching a comparable template image in multiple images

very difficult. This research proposes a motion-based approach to

fuse multiple TSAs and learn the domestic environment layout with

a privacy improvement of utilising TSA in potential monitoring

applications running in the cloud. Inspired by the results from this

stage of the research, the fourth contribution of the research

presented in this thesis is a human-in-the-loop fall detection

approach in the Activities of Daily Living (ADLs) that reduces the

false-positive alerts while keeping the false-negative fall predictions

as low as possible. The novel solutions and the results presented in

this thesis demonstrate a significant contribution toward enabling

privacy-preserving human behaviour monitoring.
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Chapter 1

Introduction

There has been an increase in the ageing population over recent years. According

to the World Health Organisation (WHO), the older adult community aged 60+

years is expected to grow from 12% of the total population in 2015 to 22% in 2050

worldwide [1]. As a consequence, long-term care expenditures for older adults

will increase. Moreover, the acceptability of care homes among older adults is

low [2], and they often prefer to stay in their own homes. Therefore, there is

a necessity to enhance the autonomy of older adults by finding new alternative

human behaviour monitoring solutions that provide them with independent living

in their own homes.

The sensor technologies which could be used to acquire information related

to human behaviour in a domestic home environment can be classified into three

main categories:

a) Wearable-based sensors usually require the users to wear or carry a device

perpetually. This is inconvenient for older adults and could be even more

challenging for older adults suffering from Dementia or other cognitive

impairments, as there is a high probability of forgetting to carry these

devices [3].

b) Ambient sensing devices such as Passive Infra-Red (PIR) sensors are

installed in a home environment. Such devices preserve privacy but do not

generally perform well in multi-occupancy home scenarios [4]. Other

privacy-preserving device-free sensing methods, including Wireless Fidelity
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(WiFi), Radar, and Radio Frequency Identification (RFID), suffer from

notable limitations in domestic human monitoring applications such as

vulnerability to environmental interference [5, 6].

c) Vision-based sensing, for example, cameras perform very well in real-world

scenarios, although it violates users’ privacy, clearly in domestic

environments, e.g., homes, care homes etc.

Conversely, a deployable domestic human behaviour monitoring solution to

meet the urgency of economic and societal requirements of older adults should be

accepted by the older adults themselves as well as the care service providers. That

is, human-centred systems for domestic monitoring should meet the following

stakeholders’ acceptability factors:

- Impacts, the proposed system should contain applicable solutions that have

real economic and/or social impacts,

- Privacy-preservation, the system should maintain the privacy of its users,

- Reliability, the system should be reliable to perform its tasks in realistic

domestic environments that may contain more than one occupant,

- Convenience, the system should operate autonomously without interfering

with normal human activities at reasonable installation cost,

- Accountability, systems should be accountable to the users.

This research thesis undertakes these acceptability factors through utilising

a privacy-preserving, non-contact, low-cost, high-performance, and

low-resolution thermal imager, referred to as Thermal Sensor Array (TSA), for

domestic human behaviour monitoring. Further, this research contributes to

solving major limitations of TSA to operate in a different multi-occupancy

environment with a multi-sensor signal processing approach. Important derived

decisions from the proposed approach, such as abnormal behaviour alerts, are

accountable to the human user by proposing a novel human-in-the-loop

approach to significantly reduce false-positive alerts while keeping the

false-negative fall predictions low.
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Figure 1.1: Schematic representation of the main functional phases design
proposed for domestic human behaviour monitoring.

The rest of this chapter is structured as follows: an overview of this research

is demonstrated in Section 1.1 followed by the research aim and objectives in

Section 1.2. Section 1.3 introduces the major contribution of the thesis. Finally,

the remaining thesis chapters are outlined in Section 1.4.

1.1 Overview of The Research

The prime motivation of this research is to enable human behaviour monitoring

in applicable real-life scenarios. It is neither deployable nor impactful to propose

a human monitoring system on the assumption that humans live in a single

inhabitant environment. In fact, residential homes are occupied by an average

of 3.14 people per household [7]. Nevertheless, some older adults may live alone,

but they could still have visitors or care assistants visiting their homes at certain

times. This causes the system to fail to operate or erroneously send abnormal

alerts to the information support once more than one person has occupied the

environment. On the other hand, abnormal human behaviours are unpredictable

and may even be more challenging to collect actual abnormal behaviour data in

a controlled lab environment. Therefore, it is essential to address a valid issue

concerning the users’ accountability to the system’s decision in human behaviour

monitoring applications.
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This research methodology is drawn into two parts. The first part supports

the monitoring of human behaviour through the analysis of human physiological

thermal signals. The second part analyses human behaviours by processing

human thermal motion signals. In total, four sequential functional phases have

been proposed towards enabling potential human behaviour monitoring that

applies to real-world scenarios. Figure 1.1 illustrates the proposed research

design to enable an impactful human-centred monitoring approach. The design

phases are defined as follows:

- Adaptive TSA placement for human segmentation and occupancy

estimation: placing TSA in different locations and new domestic

environments can pose a significant challenge due to the change in the

human shape presence from different sensor placements and environment

ambient temperature. In this thesis, a novel framework based on a deep

convolutional encoder-decoder network is proposed to address this

challenge in real-life deployment. The framework presents a semantic

segmentation to segment the human presence and counts the number of

people from different sensor locations, domestic environments, and

human-to-sensor distance.

- Human localisation and physiological knowledge extraction: this thesis

presents discrete and continuous distance estimators to extract human

localisation knowledge based on their physiological presence in the TSA’s

Field of View (FoV) in terms of human-to-sensor distance and

human-to-human distance. Also, it proposes a real-time distance-based

field of view classification through a novel image-based feature.

- TSA fusion: a motion-based approach is proposed to fuse multiple TSAs

and learn the domestic environment layout to enable further human

behaviour monitoring applications to operate in different environment

layouts. Besides, a privacy-improvement in utilising these TSAs in a

centralised care service system is proposed.

- Human-in-the-loop fall detection: building on the previous steps, a novel

human-in-the-loop fall detection approach in the Activities of Daily Living
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(ADLs) is developed in this phase.

1.2 Research Aim and Objectives

The aim of this research is to enable TSA sensors to perform privacy-preserving

human behaviour monitoring to support the independent living of older adults

in a domestic multi-occupancy environment. This involves the combination of

two concepts, human thermal physiological learning and human thermal motion

learning to be used to overcome limitations of the utilised sensing technology,

extract human-related localisation knowledge, detect abnormal behaviours and

finally give people the autonomy of action through intelligence knowledge

derived by computational intelligence techniques. To achieve the project aim,

the following research objectives have been identified:

1. Investigate existing sensing technologies for domestic human behaviour

monitoring and propose a suitable sensor to be utilised in the system’s

acquisition stage.

2. Calibrate between different thermal imagers to infer the opportunities and

limitations of TSA in human-centred applications.

3. Propose a technique for human segmentation from different sensor

placements and domestic environments.

4. Investigate how to identify the multi-occupancy environment and determine

the number of people in an environment that could potentially contain an

animal pet.

5. Explore human distance estimation techniques to localise multiple human

subjects in the environment.

6. Propose a multi-TSA fusion approach to enable human behaviour

monitoring to operate in large and different domestic environment layouts.

7. Investigate the capability of TSA to detect abnormal behaviours in ADLs

and propose a human-in-the-loop approach to boost the system reliability

and accountability.
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1.3 Original Contributions

The major contributions of this thesis are summarised as follows:

- The utilisation of the TSA for human behaviour monitoring to adjust the

trade-off between privacy, performance, and cost. This is achieved at the

sensor level of the widely proposed human-centred applications in a

domestic environment.

- An empirical calibration between low- and high-resolution thermal

imagers with privacy assessment of low-resolution TSA sensors to observe

the opportunities, limitations, and future trends of using TSA in human

monitoring applications.

- A novel use of a deep encoder-decoder convolutional neural network to

segment the human presence from a low-resolution TSA’s output. The

proposed human segmentation approach has the capability to segment the

human presence from a distance of up to 9 meters.

- A robust and adaptive occupancy estimation framework, able to estimate

the occupancy from different sensor placements, human-to-sensor distance,

human-to-human distance, and in an unseen noisy domestic environment.

Also, an investigation of the TSA operating distance for human presence

acquisition has been conducted.

- A novel real-time feature to classify the sensor’s Field of View (FoV) into

distance-based regions.

- A novel continuous distance estimation approach to estimate the distance

between the sensor placement and the human location using Artificial

Neural Network (ANN) and a discrete distance estimation approach to

predict human distance in a step of 0.5m.

- A new human-to-human distance estimation is proposed. This is referred to

as physical distance estimation. Besides, A transfer application to predict

human height using the proposed continuous distance estimator has been

developed.
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- A novel approach to fusing multiple TSAs to cover a wide inspection area

to enable further TSA-based human behaviour monitoring applications to

run in a multi-sensor processing approach.

- A novel approach to identify overlapping regions between two or more

low-resolution TSAs. The proposed approach is adaptive to work in

different domestic layouts and sensor placements through proposing an

environmental layout learner.

- An improvement for the TSA privacy feature in human behaviour

monitoring applications to avoid the human image being reconstructed by

a third party during data transmission and storage in the cloud.

- An exploration of the efficiency of optical flow features in ADL recognition

and abnormal human behaviour detection using TSA. Besides,

comprehensive experiments are conducted to validate the use of optical

flow features with Long short-term memory (LSTM) and Bidirectional

long-short term memory (Bi-LSTM) in the prediction stage.

- A new accountable human-in-the-loop fall detection approach is proposed.

It maintains a high-performance fall detection and reduces human fall false-

positive alerts reported to potential central information support by enabling

a human-interaction interface.

The outlined contributions of the thesis are addressed in different chapters of this

thesis. A summary of these chapters is presented in the following section.

1.4 Thesis Outline

This thesis consists of nine chapters. The organisation of the thesis structure is

further illustrated in Figure 1.2. The contents of this thesis are summarised as

follows:

Chapter 2: Literature Review - This chapter provides an overview of previous

work in the field of human behaviour monitoring and its crucial aspects.
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Figure 1.2: Thesis structure indicating the organisation of the chapters and their
respective dependencies.

Chapter 3: Human Behaviour Monitoring: Architecture and Methodology -

The proposed monitoring scheme architecture, the utilised sensing technology,

and the data collection scenarios are provided in this chapter.

Chapter 4: An Empirical Calibration with Privacy Assessment of Low- and

High-resolution Thermal Imaging - This chapter presents the calibration of

various thermal imaging resolutions in order to provide a better understanding

of the opportunities, limitations, and future trends of using TSA in

human-centred applications. Precisely, this chapter provides fundamental

empirical-driven knowledge to Chapters 5, 6, 7, and 8.

Chapter 5: Adaptive Sensor Placement for Human Segmentation and

Occupancy Estimation - This chapter presents a framework to enable TSA to

semantic segment the human presence from different TSA placements and

determine the number of human subjects appearing in TSA’s output

accordingly.
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Chapter 6: Human Localisation and Physiological Knowledge Extraction -

This chapter introduces a novel localisation technique to extract physiological

knowledge of human presence in the TSA’s FoV. Precisely, to estimate

human-to-sensor and human-to-human distances using a single TSA without

relying on a second reference sensor.

Chapter 7: Thermal Motion Signal Processing for Sensor Fusion - This chapter

presents a novel approach based on the apparent motion pattern of moving

objects to fuse multiple TSAs and learn the domestic environment layout to

enable further human behaviour applications to run in a multi-sensor processing

approach. Besides, a privacy improvement of TSA output prior to integrating

them in a central information support platform is introduced in this chapter.

Chapter 8: Human-in-the-Loop Anomaly Detection in Activities of Daily

Living - This chapter proposes a novel human-in-the-loop fall detection

approach in ADLs. The motivation for enabling a human interactive model, fall

detection confirmation, is to influence resource efficiency by reducing

false-positive alerts while keeping the false-negative fall predictions low.

Chapter 9: Conclusion and Future Work - This chapter presents the conclusions

arising from the thesis and suggests directions for future work on monitoring

human behaviour using TSA sensors.
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Chapter 2

Literature Review

2.1 Introduction

As research into applications of human-centred monitoring has been an attractive

and fruitful area of research, this has resulted in many published research works

in recent years. The number of research work published in the field of occupancy

monitoring has increased dramatically from less than 20 publications per year

between 1981 and 2003 to more than 250 in 2021 [8]. This rapid growth indicates

an increased demand for monitoring applications of human behaviour in domestic

environments to meet socio-economic needs. In particular, to reduce the cost of

long-term care for older adults and support their independent living [4, 9, 10, 11].

Therefore, it is essential to review the state-of-the-art that supports domestic

human behaviour monitoring to justify the intent of this thesis research work.

This chapter provides a comprehensive review of the previous work by critically

analysing their proposed sensing technologies and data-driven methodologies.

The remainder of this chapter is organised as follows: Section 2.2 gives an

overview of the utilised sensing technologies in human monitoring applications.

To give a general understanding of data-driven methodologies to signal process

the output of the sensors, Section 2.3 provides background on widely used learning

and prediction models. In Section 2.4, human-centred applications related to the

concept of this thesis have been critically analysed to conclude the research gaps

in Section 2.5.
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2.2 Sensing Technologies

Due to the rapid growth in the number of sensing technologies that have

emerged in the context of monitoring human behaviour in domestic

environments, this thesis categorises the used sensors in monitoring human

behaviour into three different categories (ambient, vision, and wearable). Figure

2.1 visualises the sensor categories and their most prominent sensors. A

summary of sensor categories is provided below.

2.2.1 Ambient Sensors

Ambient sensors are an example of a non-contact sensing approach that does

not require the users to carry or wear any specific device. PIR sensors are one of

the most widely used ambient sensors in domestic human monitoring. The

working principle of the PIR sensor is based on using a pair of pyroelectric

sensors to detect the heat energy in the ambient environment. The two

pyroelectric sensors sit beside each other, and the change in the signal

differential between them indicates a warm object motion. Thus, the output of

PIR sensors is a digital (binary) signal that implies either a trigger of a new

movement or not. The new movement term implies that PIR sensors cannot

detect stationary subjects as they do not have motion. This leads to the failure

of PIR sensors in human-centred applications that could have humans with

inactive states, for example, sleep or rest. Nevertheless, PIR sensors has been

proposed for various applications including ADLs recognition [4, 12], user

localisation [13, 14], gait velocities analysis [15, 16], sleeping and night activities

monitoring [17, 18]. Besides, PIR sensors are typically integrated with other

sensors to detect the presence of human subjects, such as pressure sensor that is

attached to beds or chairs, door sensor, and floor sensors [4].

Acoustic sensors are also employed in Ambient Intelligence (AmI) towards

human detection and human-related action recognition through acoustic signal

processing [19, 20, 21, 22]. The rationale behind utilising such sensors in human-

centred applications is that human action usually generates a sound interaction

that represents the performed human action, such as the sound produced while

handling dishes or during a person’s fall. However, there are serious privacy
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Figure 2.1: The categories of sensing technologies with examples of the most
prominent used sensors in domestic human behaviour monitoring applications.

concerns regarding the installation of acoustic sensors in domestic environments,

e.g., older adults’ homes.

Most Radio Frequency (RF) sensors fall into the ambient sensing approach

category and are getting popular due to their contact-less nature and

privacy-preserving features. Some of the most commonly used RF technologies

are Wireless Fidelity (WiFi), Radar, and Radio Frequency Identification

(RFID). WiFi technology has emerged in the shift of human behaviour

monitoring research from a device-bound approach to a device-free approach

through exploring the properties of wireless networks, e.g., Channel State
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Information (CSI) [23, 24, 25]. Furthermore, the radar is also an RF-based

technology that monitors contact-less human behaviour by employing a signal

reflection approach. Technically, it transmits a radio signal, which is reflected

by the objects in the path before receiving it again from the radar to form an

image of the path objects using the differences between the transmitted and

reflected signals [26, 27, 28]. Cross and environmental interference are likely to

occur between RFID systems and WiFi or personal area networks such as

Bluetooth when they share common frequency bands.Table 2.1 summarises the

advantages and disadvantages of RF technologies in domestic human behaviour

monitoring applications.

2.2.2 Wearable Sensors

Wearable sensors can measure motion-related activities such as gait, ADL

activity, and human fall. Nonetheless, the success in wearable sensors has been

a mix of setbacks and progress [29]. One of the technical barriers when utilising

wearable sensors in human behaviour monitoring is the obstruction of feature

extraction from the signal due to artefacts, body movement or respiration that

need to be resolved to obtain high-quality signals [30]. On the other hand,

wearable-based biosensors rely on specific body postures or on-body placement

to provide reliable measurements [31]. Some of the widely used sensors in

wearable devices and smartphones are the Accelerometer and Gyroscopes

sensors. These sensors, with other wearable sensors, have been widely used in

various human behaviour monitoring for healthcare purposes [32, 33, 34]. Table

2.2 provides the requirements for monitoring wearable healthcare devices versus

Table 2.1: A summary of the advantages and disadvantages of RF sensing
technologies.

Sensor Advantages Disadvantages
RFID Passive, pervasive, low-cost Environmental interference

WiFi Low-cost, pervasive
Environmental interference,
performance limitations

Radar pervasive
Environmental interference,
performance limitations
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Table 2.2: Wearable health monitoring device requirements vs healthcare type.

Healthcare Type
Care

Environment

Required
Performance in
Healthcare Use

Required
Performance in
Self-Monitoring

Requirements

Domiciliary care Patient’s home High Medium
Portable,
robust,

ease of use

Hospital care Hospital High Medium
Portable within
a hospital setting
high accuracy

Wearable health
monitoring

Anywhere,
any time

Medium Medium
Small and light,
Highly portable
and unobtrusive

health care type [35].

Although RFID technology uses RF technology, it is classified in this review as

a wearable sensing approach because it requires tagging or carrying an electronic

chip. RFID has been initially developed for military purposes to differentiate

between friendly and hostile aircraft [36]. Since then, RFID has had momentous

advancement in various human behaviour monitoring applications [37, 38, 39, 40].

The RFID sensing technology includes two main parts. The first part is the

reader, an antenna-based device that emits radio waves to collect the information

from the tags. These emitted radio waves are received and modulated by RFID

tags before the reader captures them again through its antenna. The second part

of RFID technology is the small electronic chips, which can be easily attached

to any object, referred to as tags. These tags also have a chip and an antenna.

The tag’s antenna acquires the reader antenna’s signal, passes it to the chip to

introduce changes, and finally sends it back to the reader by the tag’s antenna.

2.2.3 Vision Sensors

Vision-based human behaviour monitoring has been the basis for many

applications, including healthcare, Human-Computer Interaction (HCI), and

video surveillance [41]. However, conventional vision sensing technologies, such

as cameras, have serious privacy concerns in domestic environments, which

makes this sensing approach unacceptable for many people, including older

adults.
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Digital camera output images are in a 2D grid of pixels. The pixel is the

smallest addressable element in an image with a variable intensity value.

Typically, each pixel of the colour image has Red, Green, and Blue (RGB)

values to form a colour image. The pixel value ranges from 0 to 255, which

means the black image has RGB pixels of (0, 0, 0), while the pure blue image

would be (0, 0, 255). On the other hand, the depth camera has pixels with a

different value scale. That value is the camera to the acquired object distance,

referred to as depth. The detection of the depth is typically computed using the

Time of Flight (ToF) sensor, which floods the entire scene with light and

calculates depth using the time it takes each photon to return to the sensor.

Some depth cameras have both RGB and depth systems, which can output

pixels with the RGB and depth values, or RGBD. Finally, an infrared camera

(also known as a thermal imager) measures the infrared energy emitted by

FoV’s objects to form an electronic image showing the acquired objects’

apparent surface temperature.

Several studies have been reported for human-centred applications using

vision-based sensors [42, 43, 44, 45]. However, the privacy concerns of

vision-based sensors in domestic environments are not the only hindrances of

this approach. For example, traditional cameras are sensitive to light and

cannot operate in a dark environment. In contrast, thermal cameras are

light-independent but are a very costly approach. Similarly, the depth camera is

robust to light variation, but it is hard to extract the image features. Also, the

acquired objects’ edges are very noisy.

2.3 Data-Driven Methods

The increase of sensing technologies means more signals are collected with

heterogeneous statistical properties. Data-driven approaches are utilised for

dealing with the randomness and complexity of human behaviour signals in

intelligent domestic environments. To give a better understanding of the

data-driven approaches discussed in this thesis, this section provides a critical

and background review of some important data-driven methods used in the area

of domestic human monitoring. This review grouped the data-driven methods
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Table 2.3: A summative review of data-driven methods for domestic human
monitoring applications.

Model Type Algorithm Advantage Weakness

Deterministic

Model

Poisson distribution

simple model construction

Hindrances in dealing with
human behavioural signals

The prediction
accuracy is low

Ordinal Logistic
Time series

Logistic regression
Bayesian probability

Support Vector
Regression (SVR)

Stochastic
Model

Hidden Markov
Model (HMM)

It can handle a degree of
the randomness

of human behaviour

High prediction accuracy

The models’ setting
is complicated and

therefore the applicability
of the model to real-world

problems is low.

Autoregressive
HMM (ARHMM)
Layered HMM

(LHMM)
Dynamic Markov
time-window
inference

Markov Model

Machine
Learning

Adaptive Neuro-Fuzzy
Inference

System (ANFIS)

High prediction accuracy,
applicable in real-time

systems

Data should be of high
quality and quantity

Long training time

Genitic Programming (GP)
Presence Sense (PS)

Decision tree
K-means

Adaptive Boosting
RNN
SVM
ANN

into three main groups: Deterministic Methods, Stochastic Methods, and

Machine Learning (ML) methods. A summary of the critical review on these

three groups is provided in Table 2.3 and discussed below.

2.3.1 Deterministic Methods

The deterministic method is a fixed model that represents a low-complexity

working principle. The requirement of this method’s category is based on

long-term human observation. Therefore, data collection should represent all

probability distributions of particular human behaviours frequency. Precisely,

the occupant behaviours can be modelled based on the human behaviours
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probability distribution by finding a probabilistic model for a specific human

subject. Several techniques can be used to find a probabilistic model for human

behaviours, including Bayesian estimation [46], time series models [47] and

Poisson distribution [48].

Several studies rely on the use of deterministic methods to monitor human

behaviours in domestic environments, e.g. office and home environments.

However, this method has many limitations when it comes to describing human

behaviours. [49]. This is because human behaviours have a high degree of

randomness during abnormal situations [50], and therefore, their behaviours can

not be modelled on the basis of constant parameters, e.g., daytime.

2.3.2 Stochastic Methods

Due to the uncertainty of human behaviours, the deterministic methods would

generally fail to accurately describe stochastic human behaviours. Therefore,

previous work has explored the correlation between human behaviours and their

specific events in certain environments [8]. This has been achieved by considering

human behaviour as a random variable, and the probability of their behaviour

state at each time point is determined based on the previous state. Several

techniques have been proposed on this concept, including Markov Chain Model

[51], Hidden Markov Model (HMM) [52], and entropy measures [12].

In the context of human behaviour monitoring, the Markov chain is based

on describing a sequence of possible human behaviour events in which the

probability of each event depends only on the previously attained event [53].

This method assumes that an active human among different environmental

zones creates a human profile and random mobility between other behavioural

states. Therefore, the following behaviour state of the human only depends on

their present state with some rules about the behaviour states. Building on top

of this, the transition of human behaviour state should be defined in Markov

metrics. Although this method has been one of the most frequently used

occupancy models in recent years, it is strongly dependent on the time of

human movements and their presence in the environment, which hinders the

prediction of human activity from one area to another. On the other hand, the
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HMM assumes the states of the human behaviours are connected in a Markov

chain, but the state of each behaviour is not directly observed. Instead, each

human activity state is associated with observable parameters through a

probability distribution.

Continually, entropy is a randomness measure that has also been explored in

monitoring human behaviour [12, 54] through the use of the randomness

variance of single human activity at particular times. This stochastic method is

a promising approach in human-centred applications due to its computational

and time efficiency. However, the randomness measure of human behaviour can

be analogous to different activities of the same person or a result of a

multi-occupancy environment in the context of home monitoring.

2.3.3 Machine Learning Methods

Machine Learning (ML) is a data analysis method that automates analytical

model building. ML is a branch of Artificial Intelligence (AI) established on the

concept that systems can learn from data, identify patterns and make decisions

with minimal human intervention. There are three subcategories of ML models.

Supervised ML models are trained with ground truth data sets (labelled data),

which allow the models to learn and grow more accurate over time. In contrast,

the ground truth data sets are not provided in the Unsupervised ML subcategory,

and the model is supposed to find patterns or trends by itself [55]. Finally,

the working principle of the third subcategory, Reinforcement ML, is based on

training the systems through trial and error to take the best action through

establishing a reward system [56]. This section provides a fundamental review of

essential machine learning techniques used in the following chapters of this thesis.

In particular, classification and regression.

Classification is the problem of identifying the classes or categories of a set

of observations. There are several classification techniques to deal with the

problem of human behaviour recognition. Boosting algorithms are one of these

possible methods that seek to boost the accuracy of a given learning algorithm

by converting weak learners to strong learners [57]. In this context, a weak

learner is a classifier that performs relatively poorly in classification and is
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Figure 2.2: An illustration of adaptive boosting applied to a binary classification
problem.

slightly better than a random guess. In contrast, a strong learner can label the

testing examples (observations) more accurate than weak classifiers.

In Adaptive Boosting (AdaBoost) [58], the weak learners are decision trees

with a single split, referred to as the decision stump. The prediction model in

AdaBoost improved through training the weak learners sequentially. Each of

these weak learners aims to correct its predecessor. The weights of the

observations in the first decision stump are equal. In the next iteration, the

incorrect observations that were inaccurately classified in the previous round

carry more weight than the true classified observations to force the weak learner

to focus on the hard samples in the training set. Figure 2.2 shows an

illustration of a simple binary classification problem using AdaBoost. The first
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decision stump (D1 and D2) separates stars from circles. In this separation,

there are two misclassified stars. These incorrectly rated stars will carry more

weight than others to feed the second learner. Combining these two learners

leads to a strong final classifier that correctly classifies the objects.

Unlike the procedure of classification predictive modelling to approximate a

mapping function from input variables to discrete output variables, the regression

approach is the process of approximating a mapping function from input variables

to a continuous output variable [59]. In other words, the regression output is a

real-value, e.g., an integer or floating-point value. These are often quantities,

such as human-to-sensor distance. One of the simple regression algorithms is

linear regression, which aims to find a linear relationship between the dependent

variable and one or more independent variables using a best-fit straight line [60].

Typically, the prediction of the linear model is simply computed by a weighted

sum of input features and a constant value called the bias term. However, in

many problems, the relationship between the input and output variables is not

formed in a linear relationship. Thus, there are other techniques to deal with

such problems, such as Artificial Neural Network (ANN), that can be used for

both regression and classification [61].

Various types of ANN have been presented in the literature, including

Feedforward Neural Network [62]. This network is the purest form of ANN that

allows the data to travel in one direction. This type of ANN can have hidden

layers, and the data enters through input nodes and exits through output nodes.

The classifying activation function is also used in this type of ANN. However,

there is no backpropagation as it only supports front propagated waves.

Another important class of ANN is Convolutional Neural Network (CNN),

commonly used in image processing and computer vision applications to analyse

visual imagery [63]. This type of ANN is also known as a shift-invariant or

Space Invariant Artificial Neural Network (SIANN). CNN models cannot

effectively interpret temporal information. Thus, other types of ANN have been

proposed to process sequential data, e.g., Recurrent Neural Network (RNN),

that process sequence-based data [64]. Hence, CNN employ filters with

convolutional layers to transform the data. In contrast, RNN models are

predictive and reuse activation functions from other data points in the sequence
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to generate the subsequent output in a series.

2.4 Domestic Human-centered Applications

The TSA sensors have recently become important through emerging them in

responses to the global COVID-19 pandemic, for example, TSA-based

occupancy estimation and temperature scanning systems [65, 66, 67, 68, 69].

Nevertheless, the usage of the TSA for human-centred applications is relatively

low [70] compared to other sensing methods. This section includes a

TSA-focused comprehensive critical review of related human-centred

applications to identify previous research work gaps.

2.4.1 Occupancy Estimation

Research has been conducted to investigate the methods for counting the number

of occupants, referred to as occupancy estimation, in domestic environments for

different purposes using different sensing approaches [71, 72]. The authors in [73]

have proposed a system for tracking the elderly using High-performance Wireless

Sensor Network Node (iMote2) sensor with an Enalab camera board in smart

homes. In their work, they were able to estimate the number of occupants by

calculating the peaks within the histograms. The proposed system is based on

PIR sensors to detect occupancy in some areas of the home. This makes their

system complicated, and privacy concerns are raised here due to the use of the

camera too. Other previous works have similar privacy concerns for using the

camera to count the people in domestic environments [74, 75].

Other solutions based on wearable sensors have also been suggested. But the

designs of wearable sensors are inconvenient to most users. For instance, [76]

integrated the PIR sensor with active RFID tags to estimate the occupancy. The

main limitation of this work is that users must carry these tags continuously.

The work reported in [12] utilised the PIR sensors to distinguish between

the single and multi-occupancy environment to determine the visit time of the

older adults in a single inhabitant environment by measuring the randomness of

the PIR-based binary data using different entropy measures. Other previous
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works were also able to use PIR sensors to identify multi-occupancy domestic

environments [77, 78, 79, 80]. However, these works were only able to identify

whether more than one person occupies the environment without providing an

exact estimation of the number of people. Furthermore, their proposed

methodologies relied heavily on the sensor layout and the ground-truth

annotated sensor data.

Privacy-friendly sensing approaches reported in [81, 82, 83] have proposed

multi-modal systems for counting the number of people in the home

environment. They used multiple environmental sensors such as lighting,

temperature, movement, CO, CO2, and humidity. Although the multi-modal

approach increases these systems’ performance, it raises serious questions about

their applicability in real-use case scenarios. This is because these works have

assumed that ventilation does not affect the performance of their proposed

systems. However, ventilation may alter the level of humidity, CO, and CO2 in

the home environment, resulting in a wrong estimate of the occupancy.

Recently, authors in [84] overcame the PIR sensor’s deployability problem to

count the number of people in a home environment by introducing a new

algorithm, based on continually tracking each person’s location in the home,

without requiring other additional information such as the ground-truth

annotated sensor data. However, it is unclear whether the algorithm will work

when two people simultaneously walk alongside each other, for example, the

caregiver who helps the older adult to walk. Other PIR-based sensing research

has been shown for human monitoring [85, 86, 87, 88, 89]. However, none of

these works has considered animal pets that may alter the output of any of

these monitoring systems.

Authors in [70] have used a 4 × 16 thermal sensor array to estimate the

occupancy. They removed the background infrared using the per-pixel and

standard deviation values for a short occupancy period, and then the K*

algorithm [90] was applied to estimate the occupancy. They were able to

achieve 82.56% accuracy. It is reported that they could handle a prolonged

period of occupancy by using a complex scaling algorithm. However, using

per-pixel and standard deviation values to remove the background is not the

best solution, because when a newer object with a higher temperature than the
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human body enters the sensor environment, the system may view the human

body as radiation from the background, which results in an error in estimation.

Beltran et al. [91] suggested a multi-modal system consisting of a PIR sensor

and a TSA to estimate the occupancy. The purpose of using the PIR sensor was

to detect the empty occupancy environment and the TSA to count the number

of people in the environment. However, the proposed system may fail to estimate

the occupancy when a person has been inactive for a long time - for example,

sleeping as the probability of identifying human radiation as the background

temperature increases. Furthermore, the TSA is placed in a fixed location, which

results in the system not being worked at a different sensor location. Other

works [70, 92, 93, 94, 95, 96, 97] that used the TSA to estimate the occupancy

also contain similar sensor location adaptation problems.

2.4.2 Human Distance Estimation

Measuring human-to-human distance, which refers to human physical distancing,

can be classified into either passive or active approaches. The passive systems

usually rely on the use of vision sensors such as regular cameras or expensive high-

resolution thermal cameras [98, 99, 100, 101, 102]. One of the advantages of using

vision sensors is that users have no requirements to carry any particular device.

They still perform reliably in measuring human physical distancing, thanks to

the extensive research in computer vision. However, they raise concerns about

people’s privacy in domestic settings such as nursing homes, hospitals, or even

smart homes to support independent living for older adults.

Recently, there has been a growing interest in active approaches due to their

deployability feature, e.g. contact tracing apps, which use Bluetooth proximity

sensors to track human’s physical distancing. However, there exist problems in

performance and reliability [103, 104, 105]. This raises a growing interest in more

reliable proximity sensing solutions for sensitive environments [106].

Authors in [107] proposed an Ultra-sound based scanning approach to

measure the human physical distance. The reason behind the Ultra-sound

sensor is that it has higher accuracy than Bluetooth. However, it is prone to

multi-path propagation errors and poses robustness concerns in real-use case
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scenarios. Also, there exist other important viable methods, including cellular

and Global Positioning System (GPS) [108], capacity body sensing [109], and

magnetic field [110]. TSA sensors have been proposed for human positioning

applications in several reports [111, 112, 113, 114, 115, 116]. However, none of

the previously published works explicitly propose to measure the human

physical distance or human-to-sensor distance.

2.4.3 Fall Detection

Conventional wearable devices use an accelerometer’s sensor to measure the

object acceleration [124, 125, 126]. The usage of wearable sensors for human fall

detection utilises the change in motion, location, and posture of the monitored

object. In general, wearable device approaches are cost-effective, easy to design,

and commission. On the other hand, these need to be worn by the user for

accurate results, and they could be inconvenient to use for many users[127]. In

addition, individuals are prone to forgetting to wear the device, or situations

such as the need to take a shower force users to take off the devices, hence the

inability to detect falls accurately, leading to low performance.

In contrast to wearable devices, vision-based methods include the use of

ordinary cameras[128, 129, 130], which solves the fixed body device location in

the signal acquisition stage. The vision-based approach can be subdivided based

on operation, including change in shape, inactivity, head change analysis,

posture, and Spatio-temporal analysis [127]. For instance, in the inactivity

technique, the user’s period of inactivity on the floor contributes to detecting a

Table 2.4: A comparison of TSA type, resolution, placement, and sensor
placement adaptability proposed for human fall detection systems.

Ref. TSA Type and Resolution TSA Placement Adaptive Placement

[117] Panasonic’s Grid-EYE (8x8) Ceiling No
[118] Melixis (16x4) Wall No
[119] Panasonic’s Grid-EYE (8x8) Mini-robot No
[120] Panasonic’s Grid-EYE (8x8) Ceiling No
[121] Panasonic’s Grid-EYE (8x8) Cellinig No
[122] Melixis (16x4) Ceiling, side by side No
[123] Melixis (16x4) Ceiling, side by side No
[121] Panasonic’s Grid-EYE (8x8) Ceiling No
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Table 2.5: A comparison of the experimental setup, data-driven approach, and
TSA-based fall detection state-of-art performance results.

Ref.
Performed
Activities

Learning
Algorithm

Accuracy (%) Accountability

[117]
Standing
Sitting
Lying

CNN - Missing

[118]

Sitting
Bending
Squatting
Walking
Standing

k-NN 93% Missing

[119]
Standing
Sitting

Picking up
SVM 88,7% - 94,7% Missing

[120]
Sitting
Walking

k-NN 94.3% - 95.8% Missing

[121]

Walking
Jogging
Squatting
Lying down
Staying still

Random Forest - Missing

[122]

Sitting
Bending
Squatting
Walking
Standing

Voting classifier 97.75% Missing

[123]
Standing
Sitting
Lying

Logistic regression 99.94% Missing

[121]

Staying seated
Staying up
walking

standing up

3D-ConvNet 97.22% Missing
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fall. However, the main drawbacks are light dependency and its violation of

people’s privacy. Finally, ambient sensors have also been used to detect falls, for

example, pressure sensing [131], PIR sensors, and floor vibration [132]. Ambient

sensing ensures user privacy, a critical issue in vision-based approaches and is

more convenient than wearable-based approaches. However, its detection is

affected by all variables within the environment, resulting in low performance.

The use of TSA in fall detection has emerged in recent years to bridge the gap

between performance and user privacy concerns [120, 133, 134, 135]. A critical

comparison of TSA settings, data-driven methods, and performance of the

state-of-art TSA-based fall detection systems has been provided in Table 2.4,

and Table 2.5.

2.4.4 Sensor Fusion

Unlike PIR sensors, TSA sensors can detect motionless warm objects and

moving objects with the direction of their movements within their FoV through

employing conventional PIR motion detectors in what is called thermopile array

[136]. Therefore, TSA has also been proposed for several human-centred

applications [111, 112, 113, 114, 115, 116]. However, none of these works

discovers the scenarios of using multiple TSAs. This is a critical issue, for

example, in the occupancy estimation systems, which utilises TSA

[70, 91, 92, 95, 137, 138]. This is because humans located in the overlapping

FoV’s of two or more sensors will be counted as two subjects in the prediction

stage, which leads to a wrong occupancy estimate.

Similarly, there have been recent works on using the TSA on human activity

recognition and abnormal behaviour detection [135, 139, 140, 141, 142]. The

approach followed to process the TSA output is similar to image-processing

approaches [143] while the analytical techniques on individual time intervals,

frames, were different, for instance, Support Vector Machine (SVM) [119],

K-Nearest Neighbour (k-NN) [91, 144], decision trees [97, 116], and Kalman

filtering [145, 146]. One of the notable technical challenges reported in most

human-based applications which use TSA is that external heat sources have a

major negative impact on the system performance. On the other hand, TSA’s
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fusion has not yet been investigated in such applications. Considering falls as

abnormal human behaviour that could happen in an overlapped area between

two sensors (One sensor would not be sufficient to cover the entire environment,

e.g. older adult home). The proposed systems may trigger two separate fall

alerts incorrectly. Moreover, identifying overlapped regions between multiple

TSAs significantly impacts other human monitoring applications, including

occupancy estimation. The impact of this can be clearly demonstrated in

situations where a person could be present in the overlapped region of two

sensors, and thus the system might consider them as two people in the

environment rather than one.

The fusion concepts have been applied in various applications [147],

including biometric authentication systems [148, 149, 150], air pollution

monitoring [151], COVID-19 non-remedial solutions [152], surveillance networks

[153], vehicle accident detection and classification [154], and human emotion

monitoring [155].

27



2. Literature Review

2.5 Discussion and Research Opportunity

The gaps identified from current research, as discussed in the review, are

highlighted in this section. The fundamental research gap is with regards to the

trade-off between the privacy, performance, and cost of the widely used sensors

for human behaviour monitoring that hinders the deployability of such systems

on a large scale. Although this research proposed to fill this gap by utilising a

low-resolution TSA due to its low-cost and human privacy-preserving claims,

there has not been an independent empirical calibration of low-resolution TSA

and high-resolution imagers for human-centred applications. This means that

the privacy-preserving feature of TSA sensors has not been experimentally

validated to assess the potential for human identification from the raw TSA

output. Besides, there has not been sufficient published research work on

TSA-based human behaviour monitoring compared to typical sensing-based

approaches.

In the context of data-driven methods, previous approaches to

human-centred applications using the TSA usually rely on the use of a fixed

sensor location to make the human-to-sensor distance and the human presence

shape fixed. However, placing this sensor in different placements and new

indoor environments can pose significant adaptability challenges. Such poor

adaptability raises significant concerns about the deployability of TSA-based

applications. For illustration, placing the sensor on the ceiling of the room

reduces the sensor’s FoV, which means that more sensors will be required to

cover a wider area. Furthermore, most of the previous research work on assisted

living to help older adults to live independently in their own homes assumed

they live in a single residential environment [156]. Therefore, it is essential to

add a new functional layer to distinguish between single and multi-occupancy

status in smart home solutions to make them applicable to real-life scenarios.

Extracting localisation knowledge of human subjects in the domestic

environment is vital to developing a robust human behaviour monitoring

system. Previous approaches to estimating the distance between a reference

sensing device and a human subject relied on ordinary or high-resolution

thermal cameras. Also, an adaptive approach to human distance estimation
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using the TSA has not been explored. Furthermore, the main limitation of

deploying TSA-based systems on a large scale is the challenge of fusing multiple

TSAs to cover a wide inspection area, e.g. residential homes and care homes.

On the other hand, objects that appear in the low-resolution thermal images

acquired from TSA have low intra-class variations and high inter-class

similarities, making the identification of overlapping regions through matching a

comparable template image in multiple images very difficult. Thus, there is a

necessity to develop a fusion approach to enable multiple TSAs to cover a wide

inspection area for an impactful monitoring human behaviour system.

Finally, most of the previous reported work that explored the use of TSA in

human abnormal behaviour detection did not take into account the effect of

false-positive detection scenarios on the consequent waste of emergency alerting

and response resources. This leads to real concerns about the reliability of

deploying such systems for multi-user environments with centralised information

support. For instance, a human fall is abnormal human activity that can occur

from standing, sitting or even unpredicted activity. Therefore, it is crucial to

address a valid issue concerning the users’ accountability to the system’s

decision in human behaviour monitoring schemes.
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Human Behaviour Monitoring:

Architecture and Methodology

3.1 Introduction

An impactful domestic human behaviour monitoring should be flexible to operate

in different domestic environment layouts, sensor placements and inclusion for

multi-occupancy environment scenarios. It is also important that the system

be reliable and able to solve its intended problems. For example, developing a

health-related anomaly detection system to deploy in older adults’ homes with

centralised information support may create severe problems if the system is not

sufficiently reliable. This can be demonstrated in the example of a fall detection

system that triggers alerts to the information system upon detecting human falls.

A large deployment of such systems without considering user accountability may

lead to unreliable responses and actions, e.g., sending too many ambulances for

false alarm falls. Similarly, a solution that has been designed on the assumption

of a single-occupancy environment could erroneously report abnormal human

behaviours in the presence of a visitor.

This chapter facilitates the thesis readability by introducing the proposed

sensing technology and system architecture developed in this thesis for an

effective domestic human behaviour monitoring scheme. This chapter is

structured as follows: Section 3.2 presents the utilised sensing technology for
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domestic human behaviour monitoring. Section 3.3 provides the architecture of

the proposed monitoring scheme followed by the data collection scenarios in

Section 3.4. Lastly, Section 3.5 summaries the chapter.

3.2 Sensing Technology

The TSA sensors are employed as a non-contact sensing approach to measuring

the circumference temperature in a specific area. In this thesis, a commercial

TSA1 with the resolution of 32 × 24 IR array, which makes a total of 768 Far

Infrared Radiation (FIR), has been used in the system acquisition stage. The

justification behind choosing this TSA’s resolution has been based on an empirical

calibration of different thermal imagers presented in Chapter 4. Besides, the

sensor can be accessed via the I2C interface, and its electric current is less than

23mA. This mA current makes it suitable for a battery-powered solution. The

refresh rate of this sensor is between 0.5 and 64Hz, which makes it capable of

detecting swift human movements. Figure 3.1 shows a heat-map representation

of the TSA output, which contains the acquired temperatures in the form of a

matrix. This heat-map contains a single human presence as well as the acquired

background temperatures. Based on this visual illustration, it is clear that it is

not possible to obtain identifiable human information visually. This assumption

has led to the claim that TSA is a privacy-preserving approach.

To determine the temperature of a specific region in the thermal image, this

region has to illuminate at least one complete FIR (pixel). Otherwise, the pixel

will represent a mixed temperature of the object and the adjacent background.

For example, the human presence shown in Figure 3.1 shows a variation in

human acquired temperatures. One possible reason for this variance is dressing.

However, the facial region of the human presence has also suffered from

temperature variance. This is because some of the acquired face temperatures

were not fully illuminated by a full pixel.

On the other hand, the parameters used to describe a visible spectrum can

also describe the IR-based optical system. The main difference apart from the

1The sensor details can be obtained from the Melexis website:
https://www.melexis.com/en/product/MLX90640/
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Figure 3.1: A visualisation of TSA spatial temperature matrix representing the
presence of a human subject.

wavelength is the material of the lenses. In the context of IR optics, usually,

Silicon, Germanium, Zinc Sulfide or Chalcogenide glass show good transparency

for the IR spectrum. Thus, these materials are commonly used to produce lenses

for infrared optical systems. Hence, ordinary glass is not transparent in the

thermal IR spectrum. This explains why the IR optical system, e.g. TSA, fails

to acquire human thermal signals blocked by a glass door.
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3.3 Proposed Architecture

The focus of this research is to investigate the human physiological and

behavioural thermal patterns for privacy-preserving human behaviour

monitoring to support the independent living of older adults in a

multi-occupancy environment. To achieve this, the research methodology is

drawn into two main directions. First, human physiological processing of the

human thermal signal. Second, human behavioural processing of the human

motion signal. This drawn methodology consists of four novel main functional

phases presented in the system architecture’s Figure 3.2. An outline of these

functional phases is provided below.

3.3.1 Phase 1

Employing TSA to obtain the data requires careful consideration of

TSA-related constraints. One of these constraints is the sensor placement and

coverage area. For instance, most of the early published TSA-based work

proposes a ceiling placement to obtain a fixed human presence shape, and

human temperature values [70]. However, this leads to severe

engineering-related concerns regarding the cost and the required sensors to

cover a large environment. In particular, relying on ceiling TSA placements

means more sensors are demanded. Therefore, the first problem solved in this

phase is to enable the TSA sensor to segment the human presence from an

adaptive sensor placement using appropriate pre-processing, semantic

segmentation, and post-processing techniques.

Multi-occupancy environments are also considered while designing the

system architecture. Thus, this functional phase provides an approach to

distinguish between empty, single and multi-occupancy environments through

estimating the number of human subjects in the acquired low-resolution thermal

images. The detailed technical concepts regarding this functional phase are

provided in Chapter 5.
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Figure 3.2: The proposed scheme architecture for domestic human behaviour
monitoring.
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3.3.2 Phase 2

The objective of the first phase was to segment and count the number of people

using a flexible sensor placement. Nevertheless, the localisation and

physiological knowledge of the human presence have not been extracted.

Learning the exact location of the human presence supports tracking human

movement in the multi-occupancy environment. Two important values of

localisation information have been extracted from the TSA output in this phase:

(1) the human-to-sensor distance, and (2) the human-to-human distance.

Furthermore, this phase proposes a novel image processing feature to classify

the TSA’s FoV into depth-based regions to facilitate real-time human

localisation.

Chapter 6 presents the detailed description and experiments conducted to

evaluate this proposed phase.

3.3.3 Phase 3

Unlike the first two phases’ methodology, which was based on a single frame

processing, this phase explores human behavioural analysis through a

time-series-based TSA signal processing to enable the proposed monitoring

scheme to automatically learn the environment layout and identify the

overlapping regions between multi-sensors’ FoVs. Thus, this chapter is

concerned with fusing multiple TSA sensors.

Identifying overlapped regions between multiple TSAs impacts various human

monitoring applications, including occupancy estimation systems. The impact of

this can be clearly demonstrated in situations where a person could be presented

in the overlapped region of two sensors. Thus the system might consider two

people in the environment rather than one. Besides, considering falls as abnormal

human behaviour that could happen in an overlapped region between two sensors

(One sensor would not be sufficient to cover the entire environment, e.g. older

adult home). The proposed system may trigger two separate fall alerts incorrectly.

More information regarding this phase is provided in Chapter 7.
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3.3.4 Phase 4

Inspired by the results of the previous phase, this phase continues to explore

human motion analysis in human ADL recognition and identifying human

behaviour anomalies. Precisely, to detect human falls in ADLs and promote

users’ accountability through proposing a human-in-the-loop fall detection

system. More information regarding this phase is provided in Chapter 8.

Several experiments and robustness analyses have been conducted to examine

the proposed phases’ generalisation ability and reliability, such as assessing the

ability of the proposed human behaviour monitoring for human subjects during

sleep or in the presence of an animal pet.

3.4 Data Collection Scenarios

One of the acceptability factors for good human behaviour monitoring is

convenience, as discussed in Chapter 1. To achieve such a system, the system

must be easy to use and not interfere with the users’ daily activities. On the

other hand, the system should also be easy to install in different environment

layouts without restrictions on the sensor placements. Ideally, the proposed

monitoring scheme should facilitate the system installers to choose where to

place the TSA based on their on-site observations. Accordingly, the system

should segment the human presence, learn the environment layout, and enable

multi-sensor processing from different TSA placements and domestic

environments.

A comprehensive data collection has been conducted with different TSA

placement scenarios to evaluate the performance of the proposed approach

functional phases. A summary of the TSA placement scenarios used to validate

each functional phase in the proposed approach is provided below.

- Stage (i) - data collection scenarios: the first data collection scenario is

implemented while placing the TSA on a vertical position as shown in Figure

3.3(a). Besides, a ceiling TSA placement, illustrated in Figure 3.3(b), is the

second data collection scenario to evaluate the adaptability of the proposed
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Figure 3.3: The scenarios of TSA placements to evaluate the performance of the
proposed human behaviour approach.
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human segmentation and occupancy estimation approach to operating with

complete unseen data.

- Stage (ii) - data collection scenarios: the data collection scenarios conducted

for this stage is based on a wall TSA placement, which is illustrated in

Figure 3.3(a). This scenario is more realistic than the ceiling placement

scenario for human localisation and distance estimation. Hence, human-

to-sensor distance from a wall placement is more challenging than ceiling

placement since human-to-sensor distance could be predicted or generalised

in-home environment settings. Furthermore, the proposed approach in this

stage has also been tested with completely unseen data and from new TSA

placement, which is the ceiling visualised in Figure 3.3(b).

- Stage (iii) - data collection scenarios: this thesis finds that the objects

appearing in the low-resolution thermal images obtained from TSA have

low intra-class variations and high inter-class similarities, making the

identification of overlapping regions through matching a comparable

template image in multiple images difficult. Thus, various sensor

placements illustrated in Figure 3.3(c) has been employed to validate the

proposed sensor fusion approach. Specifically, the first use case scenario to

evaluate the feasibility of the proposed fusion approach to verifying if the

movement of a person acquired from 2 sensors installed side by side at 90◦

can be determined in a multi-occupancy environment where there could

be another person who may perform similar or different activities. The

second case scenario is when sensing interference occurs between opposite

sensor placements. Third, the interfering sensors are placed on the same

wall at different heights. Finally, the interfering sensors are placed on the

wall and ceiling.

- Stage (iv) - data collection scenarios: in the last data collection stage, the

TSA is placed on a short height wall placement as illustrated in Figure 3.3(c)

to evaluate the performance of the series-based signal processing for human

ADL recognition and abnormal human behaviour detection. Furthermore,

the ceiling placement has also been used to analyse the proposed approach’s

38



3. Human Behaviour Monitoring: Architecture and Methodology

robustness in predicting abnormal human behaviours during sleep.

The data collected has been conducted in different domestic environments in

the summer and winter seasons of the United Kingdom. The reason for

considering different seasons and different domestic environments is that the

heating systems in the United Kingdom usually operate during the winter

season. In the summer months, neither heating nor cooling is used. These

evaluations ensure a high generalisation ability for the proposed human

behaviour monitoring approach as the TSA sensor is sensitive to ambient

temperature. Finally, all chapters in this thesis that contains data collection

have provided a detailed description of the used TSA placement scenarios and

how the data has been configured and analysed.

3.5 Chapter Summary

This chapter has presented the utilised sensing technology proposed to monitor

human behaviour in domestic environment settings. Moreover, this chapter has

abstractly discussed the architecture of the proposed approach phases to facilitate

reading the thesis. The TSA placements scenarios used during the data collection

have also been discussed.

The next chapter will provide a clear understanding of low-resolution

thermal imaging by empirically calibrating different thermal imaging resolutions

and evaluating the privacy-preserving claim of TSA imaging.
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Chapter 4

An Empirical Calibration with

Privacy Assessment of Low and

High-resolution Thermal Imaging

4.1 Introduction

Thermal imaging (also referred to as Infra-Red Thermography (IRT)) is a

method of using infrared radiation and thermal energy to gather information

about objects. Thermal imaging is used in building diagnostics and

maintenance [157], animal health check [158]. In the context of human-centred

applications, it has been emerged in several human monitoring applications and

recently came to light to measure high human body temperature (fever) in

strategies to slow the spread of COVID-19 disease [159]. This is normally

achieved by very expensive high-resolution thermal cameras. Lately, a new

commercial low-resolution TSA sensor has gained growing interest in indoor

human behaviour monitoring due to its low-cost and human privacy-preserving

claims. However, there has not been sufficient independent empirical calibration

of low-resolution TSA and high-resolution imagers for human behaviour

monitoring applications.

This chapter provides empirical calibration of low- and high-resolution

thermal imagers regarding their visible outputs, temperature accuracy and
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stability. Besides, an assessment of the claimed privacy-preserving feature of

TSA has been conducted to experimentally validate the possibility of revoking

the human identity from the TSA’s output. Thus, this chapter aims to

understand better the advantages, limitations, and research trends of using TSA

in domestic human monitoring schemes. The remaining parts of this chapter are

organised as follows: Section 4.2 provides a clear understanding of thermal

imaging for the thesis readers. An empirical calibration of thermal imaging is

provided in Section 4.3, and Section 4.4. An assessment of the

privacy-preserving feature of low-resolution imaging has been presented in

Section 4.5 followed by pertinent discussion and research trends drawn in

Section 4.6. A summary of this chapter is presented in Section 4.7

4.2 Understanding Thermal Imaging

The thermal imaging process relies on capturing the infrared radiations emitted

by the environmental objects to form a thermal image called thermograms. A

primary advantage of thermography over conventional imaging is its ability to

work with or without light since all objects with a temperature emit infrared

radiation. Recently, there has been a growing interest in utilising low-resolution

TSA in indoor human-centred applications [160, 161, 162]. The motivation behind

using TSA rather than high-resolution thermal imaging is due to several claimed

features, including privacy-preserving and low-cost capabilities.

Like any high-resolution thermographer, the spectrum of TSA radiation is

entirely determined by the temperature alone since no wavelength is selectively

emitted. Thus even a colourless object could still appear in TSA’s thermograms.

On the other hand, the PIR sensor relies on a single IR sensing element to detect

warm objects as long as they have some degree of movement. The PIR sensors can

be considered a privacy-preserving approach in indoor environment applications.

Nevertheless, PIR can only detect temperature changes within the sensors’ FoV

and, therefore, cannot be used reliably to detect, for example, different states

of humans. TSA overcomes the challenges of detecting stationary objects and

their orientation within the sensor’s FoV by utilising multiple IR sensor elements,

referred to as IR array, that works together instead of a single sensing element.
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The TSA’s low-cost feature is evident compared to high-resolution

thermographers. For instance, the price of a commercial TSA is about 0.125%

of the price of the FLIR T6XX1 camera, the high-end “gold standard” thermal

camera. However, there has not been sufficient independent empirical

calibration of the performance of TSA and high-resolution thermal imagers for

human monitoring applications. Also, an assessment of TSA’s

privacy-preserving claim for human behaviour monitoring is missing from

TSA-related works. This chapter aims to provide a fundamental understanding

of the advantages, limitations and research trends of using TSA in

human-centred applications by addressing the following specific objectives:

• to perform a visual thermal calibration of a high-resolution and high-cost

imager with low-resolution and low-cost TSA;

• to perform temperature accuracy and stability calibration for various TSA

sensors and high-resolution thermal imager;

• to validate the claimed privacy-preserving feature of TSA in cloud-based

human monitoring applications.

The above study objectives, which have been visually illustrated in Figure

4.1, have been achieved using four thermal imagers, one TSA with the resolution

of 16 × 12, two TSAs with the resolution of 32 × 24, and one high-resolution

thermal imager with the resolution of 640× 480. A detailed description of their

experimental calibration is provided below.

4.3 Visual Thermal Calibration

Thermal imagers capture the thermal energy of objects in the FoVs and output

as a temperature matrix. The temperature matrix visualisation is performed by

applying a colour mapping scheme to create a visual image. Thus, thermal

imagers could be considered as an image converter from the radiant thermal

energy to the visible images. Therefore, there are specific attributes for

1More details about the camera is available from the FLIR website:
https://www.flir.co.uk/support/products/t640/
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Figure 4.1: Graphical visualisation of these chapter objectives to calibrate
between thermal imaging and assess the privacy of low-resolution TSA output.

determining the quality of the image: Accuracy, constant pattern noise and

thermal sensitivity.

Figures 4.2(a), 4.2(b), and 4.2(c) show a visual calibration on the obtained

temperature matrices post applying the same colour map scheme using TSA

with 16 × 12 and 32 × 24 resolution versus high-resolution imager with 640 ×
480 resolution, all captured at the same distance. Remarkable observations can

be deduced from this visual calibration. First, the edges of the objects in the

TSA output were not well preserved compared to the high-resolution imaging

output. Second, the warmest region (maximum temperature values) that appears

in all visual calibrations is the human face. However, the scale of temperature

variations drops when the image resolution decreases. This is due to the fact

that each temperature value (pixel) in the imaging output represents the average

temperature of a wider inspection area for a lower resolution imager. This justifies

the clear appearance of the human face in the high-resolution image and its high

accuracy even in the detection of a small heat bump under the human lips in

Figure 4.2(c).

The noise affecting thermography in indoor human-centred applications can

be classified into two categories: (1) external noise, e.g. a cup of warm tea or ice

43



4. An Empirical Calibration with Privacy Assessment of Low and
High-resolution Thermal Imaging

Figure 4.2: A visual calibration on colour mapped temperature matrices obtained
using different thermal imaging resolutions, (a) TSA with 16× 12 resolution, (b)
TSA with 32× 24 resolution, (c) high-resolution imager with 640× 480.

cream, (2) thermal noise induced by human movement. Although external noises

affect the colour map scale of both high and low thermal images, human-induced

noise appears to be more serious in low-resolution thermal imaging. Figure 4.3

demonstrates two types of human-induced noise on the TSA output. The first is

caused by a swift human movement that can be seen around the thermal human

presence, while the second noise affects both low and high-resolution thermal

images as it is caused by prolonged human contact with environmental objects

such as a chair.
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Figure 4.3: TSA is sensitive to thermal noise induced from a recent human
movement and prolonged human contact with environmental objects such as a
chair.

4.4 Temperature Value Calibration

The visual calibration demonstrated the potential of low and high-resolution

thermal imaging in stationary and moving human detection. However, thermal

imaging provides more useful information than conventional imaging, which is

human temperature. This section investigates the reliability and accuracy of the

human temperature acquired using different TSA resolutions. Figure 4.4 shows

an experimental calibration of human skin temperature accuracy using different

resolution thermal imagers placed at the same human-to-sensor distance. The

first calibration shown in Figure 4.4(a) is concerned with assessing the stability

of the same TSA resolution. In particular, two TSAs with the resolution of

32× 24 have been used with a human moving in their FoVs. It can be observed

from Figure 4.4(a) that the TSA is a well-stabilised sensor for acquiring the

temperature value.

In the second calibration experiment, a high-resolution imager was also used.

A human moved from a close human-to-sensor distance to a far distance in the

sensors’ FoVs and two different TSA resolutions. The result of this experiment

is illustrated in Figure 4.4(b). It can be concluded from these results that there

is a linear relationship between all of the thermal imagers regardless of their

resolution. Specifically, the lower resolution TSA has a higher temperature value
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Figure 4.4: An empirical calibration of acquired human skin temperature using,
(a) same TSA resolution, (b) different TSA resolution with a high-resolution
thermal imager on a different human-to-sensor distance.

of 2◦C in a linear relationship. Moreover, the lowest resolution TSA seems to be

more accurate than the higher resolution one with reference to the result of the

high-resolution thermal imager. Besides, the acquired temperature values vary

with the distance between the object and the sensor positions on all the used

thermal imagers.

4.5 Privacy Assessment of Low-Resolution

Thermal Imaging

Unlike high-resolution thermal imagers, human information is not clear enough

to identify human identity in the TSA’s output. Therefore, it has been claimed

that TSA is a privacy-preserving sensing approach [163]. An empirical privacy

assessment has been conducted to verify the possibility of reconstructing the

low-resolution thermal image to invoke identifiable human information from the

TSA’s output.

The analysis performed to validate the privacy-preserving feature of TSA is

based on exploring if there is a relationship between low-resolution and

high-resolution imaging. Thus, low-resolution images can be converted using

this relationship to high-resolution images. Technically, to perform a regression
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analysis to estimate the relationship between independent variables

(low-resolution images) and dependent variables (high-resolution images). In

this thesis, a two-layer feed-forward neural network is trained to solve this

regression problem. The network input is the low-resolution data, while the

output is the high-resolution data. The weight of the network is updated using

Levenberg-Marquardt optimisation [164].

Given a set of m pairs (xi, yi) of low-resolution image and high resolution

image, the primary goal of the optimisation algorithm is to find the parameters β

of the network model f(x, β) to minimise the sum of the squares of the deviations

S(β) as follow:

β̂ ∈ argminβ S(β) ≡ argminβ

m∑
i=1

[yi − f (xi,β)]
2 (4.1)

where β̂ is the estimate of parameters β.

In the first experiment, a dataset of 916 low-resolution images and 916 high-

resolution images were collected simultaneously for various indoor environmental

thermal objects, including human subjects who move within the imagers’ FoV

while facing the imagers. Each subject presents in the imagers’ FoV separately

at the time of acquisition. To have the same size of input and output network

layers, high-resolution images are resized to 32× 24, the TSA output resolution.

Further, the thermal images have also been converted from matrix to vector

form. The data set was divided randomly into 70%, 15%, and 15% for training,

validation, and testing. The R-value is used as a network evaluation matrix

to report the extent to which the regression model can convert low-resolution

images to high-resolution images and was 0.93691, 0.74869, 0.7128 and 0.85879

for training, validation, testing, and all of them, respectively.

The results above demonstrate the ability of the method to convert a low-

resolution thermal signal into a high-resolution thermal signal. However, the

result of the testing subset was 0.7128, which is not as good as the performance

of the training subset. On the other hand, the aim of this experiment is to

validate the claimed privacy-preserving feature of the TSA for human-centred

applications. Therefore, a second data set was collected in the presence of a

human in all the acquired scenes. The dataset contains 96 low-resolution images
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Figure 4.5: A visualisation of the regression model for the training, validation,
and testing data sets shows the relationship between the low and high-resolution
thermal images.
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and 96 high-resolution images. The regression model achieves R-values of 0.93912,

0.93287, 0.92174 and 0.93287 for training, validation, testing, and all of them,

respectively. Figure 4.5 shows the regression plots of the relationship between the

acquired human presence in the low and high-resolution thermal images. Building

on top of this, the identifiable human information may not be as private as claimed

since it can be revoked after the low-resolution thermal signal is enhanced into a

high-resolution signal.

4.6 Discussion and Research Trends

TSA shows a promising imaging approach for human-centred applications

through overcoming challenges observed in other sensing approaches for human

monitoring applications. For example, TSA does not require humans to wear or

carry a device and thus could be more suitable for supporting older adults to

live independently in their own homes. Also, the raw TSA output does not

contain specific identifiable information compared to regular- or high-resolution

thermal imagers.

The experimental calibrations of acquired human temperature show that

human temperature values vary with imaging resolution in a linear relationship

and human-to-sensor distance. Therefore, research work should take into

account this variation in applications where the acquired human temperature is

important for system decisions, e.g. human fever detection. Furthermore, the

TSA output appears to be more sensitive to thermal noise, and thus it is very

important to consider appropriate pre-processing techniques that are specifically

suited to this sensing methodology.

The results of this chapter raise serious privacy concerns regarding TSA

deployment in indoor human monitoring applications. Accordingly, TSA

privacy should not be taken for granted since a third party could reconstruct

the human thermal image from a low-resolution signal to a high-resolution

signal. Thus identifiable human information could be revoked.

From an engineering point of view, TSA would be a better choice than high-

resolution imagers due to the low cost and development integration for large-

scale deployment of indoor human monitoring applications. Nevertheless, high-
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resolution imagers provide richer thermal information than TSA and could be

more useful in controlled-based applications such as human medical diagnostic

systems or energy efficiency applications.

Based on the empirical calibrations presented in this chapter, the TSA with

the resolution of 32 × 24 has been chosen to conclude the results of the next

chapters.

4.7 Chapter Summary

This chapter has presented an experimental calibration of various thermal imaging

resolutions to provide a clear understanding of the limitations and opportunities

of low-resolution thermal imaging in the context of human behaviour monitoring.

Furthermore, the privacy claim of low-resolution thermal imagers, TSA, has been

examined practically.

The next chapter presents the proposed approach toward thermal human

presence segmentation and occupancy estimation.
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Adaptive Sensor Placement for

Human Segmentation and

Occupancy Estimation

5.1 Introduction

Most research in the field of human behaviour monitoring in domestic

environments, e.g., older adults’ homes, are based on the assumption of a single

inhabitant environment [156]. Homes, in reality, often contain more than one

occupant. For instance, a reported study shows that the average number of

individuals per household is more than 3.14 people per home [7]. Therefore,

there is a need for a new functional layer to detect and determine the number of

people in a given area, which is referred to as occupancy estimation. On the

other hand, previous approaches to human-centred applications using the TSA

usually relied on the use of a fixed sensor location to make the human-sensor

distance and the human presence shape fixed. However, placing this sensor in

different locations and new domestic environments can pose a significant

challenge. In this chapter, a novel framework based on a deep convolutional

encoder-decoder network is proposed to address this challenge in real-life

deployment. The framework presents a semantic segmentation of the human

presence and estimates the occupancy in the domestic environment. It can also

51



5. Adaptive Sensor Placement for Human Segmentation and
Occupancy Estimation

Figure 5.1: The proposed framework to estimate the number of people in
the thermal scene obtained using the TSA after applying a set of pre-
processing techniques, a deep convolutional encoder-decoder network to semantic
segment the human presence, and post-processing techniques that consider the
characteristics of the used sensor.

segment the human presence and count the number of people from different

sensor locations, domestic environments, and human-to-sensor distance.

The remaining sections of this chapter are organised as follows: Section 5.2

explains the proposed framework architecture. The experimental results are

presented and discussed in Section 5.3. A robust analysis of the proposed

occupancy estimation phase of the human behaviour monitoring approach is

provided in Section 5.4. Finally, Section 5.5 provides a summary of this chapter.

5.2 Human-Centred Occupancy Estimation

A schematic diagram of the proposed system designed to suit the characteristics

of the TSA is shown in Figure 5.1. For example, the TSA is not light-sensitive

compared to the camera sensor. However, the TSA is sensitive to environmental

temperature and is of low resolution. Therefore, it is crucial to develop a

systemic framework that depends on the type of the used sensor itself. Besides,

the proposed framework segments the human presence from a noisy heat-map

using a deep convolutional encoder-decoder network. A set of pre-processing

and post-processing techniques are introduced to make the sensor output

applicable to the proposed segmentation technique. A detailed description of
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Figure 5.2: Heat-maps visualisation of (a) original heat-map, (b) interpolated
heat-map.

the proposed framework stages is provided below.

5.2.1 Pre-possessing

The pre-processing stage consists of three sequential phases. The first phase is to

increase the resolution of the TSA’s original signals by interpolating the original

32 × 24 temperature matrix to 96 × 72 by repeating refined temperature values

3 times in each dimension. Figure 5.2(a) shows an example of the raw heat-map

and Figure 5.2(b) shows the result of interpolating the heat-map by a factor of

3. This factor is chosen because it provides the best visual resolution of the TSA

sensor-based heat-map and is proportional to the size of the input image of the

used convolutional encoder-decoder network described in Section 5.2.2 to segment

the human presence.

The detected human temperatures vary depending on the distance between

the human and sensor locations. Also, the covered parts of the human body have

a higher temperature than the uncovered parts. The normal maximum human

temperature detected using the MLX90640 sensor from a nearby point is 33◦C.
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Figure 5.3: The Human presence using the thermal sensor array at different
distances after applying the proposed pre-processing techniques.

Thus, the second phase of the pre-processing stage is to filter any value with

a higher temperature than 33◦C by converting it to the minimum temperature

value in the temperature matrix. By doing so, thermal noises such as a hot kettle

will be removed, and the human presence will remain as a foreground object in

the thermal scene.

It should be noted that Figure 5.2 shows a visualisation of the temperature

matrix using colour mapping to facilitate the reader’s visibility of sensor data

visually. Moreover, the mentioned maximum filter converts any temperature

above the set limit to the minimum temperature in the acquired temperature

matrix to maintain the variance between the temperature values. If the filter

converts the high temperatures to zeros, this will cause the variance to be high,

which results in a different colour scheme. The third phase of the pre-processing

stage is to export the colour-mapped matrix to an RGB image.

5.2.2 Semantic Segmentation for the Human Heat-Map

Semantic segmentation is applied to separate a human subject from the RGB

image produced after the pre-processing step. Semantic segmentation aims to

classify each pixel in the image into a corresponding class. In contrast, object

detection classifies the regions of the image into a different class and draws a

bounding box around the object of interest. In order to make TSA adaptive to

different locations, object detection may not work well due to the high intra-class

variation of the human object in the thermal scene at different sensor locations

and human-sensor distances. Figure 5.3 shows the human presence in the thermal

scene after applying the pre-processing techniques at distances from 1m to 9m.

It can be observed from Figure 5.3 that the human presence changes its size and

topology with respect to the distance. Therefore, instead of detecting the human

object, this thesis proposes to use a deep convolutional encoder-decoder network
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to classify each pixel in the thermal scene acquired by the TSA to either human

or background classes.

The convolutional network architecture proposed in [165] is used here. The

first path of this network, the encoder, is used to capture the context of the

thermal image. The encoder consists of a typical stack of convolutional and max-

pooling layers. The following part is the decoder part, which is the symmetric

expanding part that enables precise localisation using transposed convolutions.

In total, the architecture of this network has 23 convolutional layers. The reason

for choosing this network architecture with the TSA is that it is designed for

low-resolution images and does not require an extensive dataset as it performs

excessive data-augmentation techniques.

The network is optimised using Adaptive Moment Estimation (Adam) [166] to

compute the adaptive learning rates for each parameter using the gradient descent

optimisation approach. This optimiser computes the first squared gradients mt

(the mean) and the second squared gradients vt (the uncentered variance) as

follow:

mt = β1mt−1 + (1− β1) gt (5.1)

vt = β2vt−1 + (1− β2) g
2
t (5.2)

mt is the estimate of the first moment of the gradient, where vt is the estimate

of the second moment of the gradient. These estimates are biased toward zero,

particularly during the initial time steps when the decay rates are low (i.e. β1

and β2 are close to 1). To compute the bias-corrected first and second-moment

estimates:

m̂t =
mt

1− βt
1

(5.3)

v̂t =
vt

1− βt
2

(5.4)

Then, the network weight update as follow:
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wt = wt−1 − η
m̂t√
v̂t + ϵ

(5.5)

The initial default value for β1 is 0.9, β2 is 0.999, and 10−8 for ϵ.

The network is trained with a dataset containing 47 labelled thermal images

acquired from one human object from a vertical position at distances from 0.5m

to 9m. The output of this network is a matrix that shows the class (human or

background) of each pixel, i.e. a binary mask that shows the human presence in

the scene.

5.2.3 Post-possessing

The semantic segmentation technique proposed in the previous section has one

drawback, which comes from the low-resolution thermal sensing methodology

itself. Unlike the RGB camera, the TSA also senses the thermal noises left by

humans even when they leave the sensor’s field of view, which has a similar

temperature to the human body. As a result, semantic segmentation may classify

these noisy pixels belonging to a human. To overcome this drawback, a post-

processing stage containing three phases is introduced.

The first phase is the connectivity filter to remove thermal noises that have

a similar human temperature, such as noises generated by the human body or a

warm object with a similar temperature to the humans, such as a warm cup of

coffee. The connectivity filter is based on morphological operations. Specifically,

the 8-connected algorithm [167] finds each connected component in the mask

generated by the semantic segmentation network. The methodology behind this

algorithm is to cluster each object based on the connectivity of its values. Each

value in the mask mentioned above belongs to the same object if it has the same

value (0 or 1) and is connected along the diagonal, horizontal, or vertical direction.

Any connected component that is less than or equal to 30 pixels is considered a

thermal noise and removed. This size is calculated based on finding the minimum

human size acquired using the TSA from a maximum distance of 9m. Next, the

second image processing technique used is the Flood-Fill algorithm [168] to fill

gaps in the human mask obtained from the last step. These holes may appear due

to thick clothing, which reduces the temperature acquired for the human body
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Figure 5.4: Illustrative results of the proposed framework, (a) the thermal images
after applying the pre-processing techniques, (b) the human presence locations
after using semantic segmentation, connectivity filter, and the extra human
validation techniques.

by using the TSA. This decrease in the human temperature values can be seen

as background pixels by the semantic segmentation network.

Since the colourmap is a colourful representation of the scene temperatures,

humans at far long distances from each other lead to colour the distant human

presence to background colours. Therefore, the second phase of the

post-processing stage is to repeat the previous steps starting from obtaining a

new RGB image of the interpolated heat-map without the locations of

segmented human presence and adding the new segmented human, if found to

the previously segmented mask. This extra-human presence validation phase

repeats until the scene becomes an empty occupancy.

Figure 5.4 shows a few examples of applying the pre-processing, semantic

segmentation, extra-human validation, and the connectivity filter to locate the

human presence in the thermal images obtained by the TSA. Figure 5.4(a)

shows the pre-processed heat-maps in different sensor location, human pose,

human-human distance, and sensor-human distance, where Figure 5.4(b) shows

the corresponding human presence in these thermal images after applying the

semantic segmentation, extra-human validation, and the connectivity filter. As

mentioned earlier, the encoder-decoder network for the semantic segment of the

human heat-map was trained to detect the human presence with only one

person from a vertical position. These illustrative examples are all unseen data

for the network.

The human presence in the heat-maps converted to RGB images has been
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determined at this stage. However, human temperature values are lost because

they are converted to RGB values to focus on pixel intensity rather than the

temperature value. Therefore, the third phase of the post-processing stage is to

restore human temperatures through multiplying the masks obtained using the

semantic segmentation, connectivity filter, and the extra human validation, which

is shown in Figure 5.4(b), by the interpolated heat-maps to count the number of

people as described in the following section.

5.2.4 Estimating the Occupancy Using Machine Learning

Approach

The final stage of the proposed methodology is to count the number of people

using the TSA. If all computed mask values from the semantic segmentation

and the post-processing techniques are zero, it means no human presence in the

thermal scene. Otherwise, two different machine learning approaches were

evaluated to estimate the occupancy. In particular, a classification model using

AdaBoost [58] and a regression model using shallow neural network [169] have

been developed to count the number of people after segmenting the human

presence from the thermal images. The primary difference between these two

approaches is that classification deals with the problem of predicting a discrete

class label, where the output of the regression is a continuous quantity.

5.2.4.1 Classification for Occupancy Estimation

In this thesis, an extension of the AdaBoost algorithm to a multi-class problem

called AdaBoost.M2 described in Algorithm 1 is used as a holistic classification

approach. The e-th training set for this algorithm includes the segmented human

heat-maps x obtained after applying the pre-processing, semantic segmentation,

and post-processing techniques, where y represents the class label (the number

of people belongs to the set Y ). The distribution Dt(i, y) is maintained over the

training set E and updated sequentially in each iteration c based on the output

of that iteration. As mentioned earlier, misclassified training samples carry more

weight than those correctly observed in the next iteration. By doing so, the

update rule guarantees the upper bounds on training and generalisation error
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Algorithm 1 The AdaBoost.M2 algorithm to classify each thermal scene into a
class label, which represents the number of people in each scene.

Input: 1. Series of E of training samples {(x1, y1), . . . , (xe, ye)} with labels
ye ∈ Y = {1, . . . , j}

2. D represents the distribution over the E samples

3. Weak learning algorithm DecisionTree

4. Counter C for the number of iterations
1: Initialize: The weight vector: w1

i,y = D(i)/(J − 1), where i = 1, . . . , E, y ∈
Y − {yi}.

2: for c = 1, 2, . . . , C do

3: qc(i, y) =
wc

i,y∑
y ̸=yi

wc
i,y

4: Dc(i, y) =
W c

i∑E
i=1 W

c
i

(y ̸= yi)

5: Call DecisionTree. ▷ Given the distribution D, and label weighting
function qc; return a hypothesis Gc : X × Y → [0, 1]

6: ϵc =
1
2

E∑
i=1

Dc(i, y)

(
1− gc(xi, yi) +

∑
y ̸=yi

qc(i, y)gc(xi, y)

)
▷ Calculate the

psudo-loss of gc.
7: βc = ϵc/(1− ϵc)

8: wc+1
i,y = wc

i,yβ
1
2
(1+gc(xi,yi)−gc)(xi,y)

c ▷ Update the new weights vector, for
i = 1, . . . , E, y ∈ Y − {yi}

9: end for

Output: gf (x) = argmax
y∈Y

C∑
c=1

log 1
βc
gc(x, y)

rates.

5.2.4.2 Regression for Occupancy Estimation

The second step to estimate the occupancy is a regression through estimating the

relationships between the segmented heat-maps and the number of people in the

scene using an artificial neural network. In particular, a shallow neural network

with only one hidden layer with sigmoid neurons and one output layer is used to

determine the number of people in the scene. The input of the network is the

segmented heat-maps, and the output is the number of people. The network is

trained using the Levenberg-Marquardt backpropagation algorithm [170]. This
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Figure 5.5: Data collection stages from two different domestic environments, (a)
the sensor is placed on the wall, (b) the sensor is on the ceiling.

algorithm aims to minimise the sum of the squares of deviations S(β) of a set of

pair n (xi, ŷi) of input heat-maps x and the number of people ŷ by finding the

parameters β of the model output f(x,β).

β̂ ∈ argminβ S(β) ≡ argminβ

n∑
i=1

[ŷi − f (xi,β)]
2 (5.6)

The network training terminates when an increase in the mean square error of

the validation dataset is detected. In this network, in contrast to classification, the

result in the regression is a continuous value. Therefore, the output ŷ is rounded

to the nearest decimal point as our goal is to estimate the discrete number of

people.
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5.3 Experiments

To evaluate the performance of the proposed methodology, experiments were

conducted with two different configurations of sensor locations. Correspondingly,

two kinds of data were collected in different domestic environments and sensor

locations.

In the first stage, the data was obtained while placing the sensor in a vertical

position, as shown in Figure 5.5(a). Within this stage, two subsets of data were

collected. The first subset consists of 47 thermal scenes in which only one person

moves in the sensor field of view up to 9 meters long. The thermal objects in

this subset are then labelled as either human or background objects. The second

subset is used to analyse the effect of human distance on sensor performance.

It is obtained in a human presence at distances of 0.5m to 9m away from the

sensor. This subset is collected every 0.5m, and its size is 325. The third subset

was collected with one, two, and three different occupants moving in the sensor

field of view to assess the performance of the occupancy estimation system. The

size of this subset is 214.

The second stage aims to assess the adaptability of the proposed framework to

work in a different domestic environment and sensor location. In this stage, the

sensor is placed on the ceiling of the room, as shown in Figure 5.5(b). The dataset

was collected in four different scenarios: one, two, three, and four occupants were

moving in the scene. The size of this dataset is 203. In addition to the above

dataset, 128 thermal scenes were collected from two empty-human environments

and sensor locations with thermal noises such as a hot kettle, laptop, and heater

when turned on to evaluate the proposed framework’s ability to detect the empty

occupancy environment. In total, 917 thermal scenes were collected to conclude

the results of this chapter.

5.3.1 Human-to-Sensor Signal Analysis

To assess the impact of the distance on the human presence using TSA, a subset

of the described dataset above is used. The dataset has different human heat-

maps every 0.5m and up to 9m in length as described earlier, which makes a

total of 18 distance steps. Further, an average human heat-map at every 0.5m
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Figure 5.6: The effect of distance on human presence, (a) the minimum,
maximum, and average temperatures, (b) the size of the human presence in the
thermal scene, (c) the variance in human temperature, (d) the estimate of the
entropy.
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is computed. This average human heat-map for each distance step aims to avoid

biased analysis of a random selection of a human heat-map.

Figure 5.6(a) shows the effect of the human-sensor distance on the value of

the acquired temperature. Specifically, the minimum, maximum, and average

temperatures of a human presence at different distances are shown. It can be

seen the acquired human temperatures decrease when a person moves away from

the sensor.

As shown in Figures 5.6(b), and 5.6(c) the sizes and the temperature variances

of human presence vary depends on the relative location of the human subject to

the sensor. One observation can be drawn from these figures; there is a significant

decrease in the size of the human presence and temperature variance in the first

1.5m. The decrease in the size of the human presence and the variance continues

beyond 1.5m, but with a smaller interval.

The common pattern of Figures 5.6(a), 5.6(b), and 5.6(c) is that they all

have relatively stable values starting from a distance of 6m meters and beyond.

However, this stability does not exist in the entropy estimation of human presence

at different distances, as shown in Figure 5.6(d). Besides, it can be identified that

a linear relationship between the entropy metric for the human presence and the

distance for every 1m.

Based on these results, it can be concluded that the TSA and all the metrics

calculated based on the thermal images are quite sensitive to distance.

Furthermore, the calculated statistical metrics, in particular, the entropy point

estimate, can be used to determine the human distance from the sensor using a

suitable function approximator (e.g. our shallow ANN).

5.3.2 Occupancy Estimation Experimental Results

The first experiment was to use the collected empty occupancy dataset and

evaluate the performance of the proposed framework to detect the empty

human environment before proceeding to the classification or regression models

as described in Section 5.2.4. The proposed framework was able to detect the

empty occupancy with 100% accuracy. This performance validates the proposed

pre-processing, semantic segmentation, and post-processing techniques in
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segmenting only the human presence from the thermal scene.

The second experiment was to examine the performance of the classification

approach using AdaBoost. The used dataset was obtained from the vertical

position. In this experiment, the dataset is divided into 70% for model training

and 30% for testing. The performance of this classification model in occupancy

estimation is 98.43% achieved accuracy.

The third experiment is to validate the performance of the classification model

with a different machine learning approach. In this experiment, the regression

approach based on a shallow neural network is used. The same data used to

train and test the classification model is also used to train and test the shallow

network. This dataset is divided into 70% for training, validating and testing the

shallow neural network during the network training stage, and 30% for testing the

performance of the trained shallow neural network to count the number of people

in the thermal scene. The performance of the regression model in occupancy

estimation is 93.75%.

The results of the above experiments show that the classification model has

better accuracy than the regression model. The assumed reason for the lower

accuracy in the regression was due to the uncertainty of some of the regression

outputs. Hence, as mentioned above, the output of the regression is a continuous

numerical value. Since this milestone of the thesis is concerned with counting a

discrete number of people, the output of the regression model is rounded to the

nearest decimal number. Uncertainty occurs when the output has one-half (e.g.

1.5, 2.5, etc.).

5.4 Robust Analysis

This analysis has two main aims. The first aim is to validate the adaptability

feature of the proposed framework for operating in a different domestic

environment and sensor location. Therefore, the sensor is installed on the

ceiling of the room in a different home. Hence, the trained deep convolutional

encoder-decoder network from a vertical sensor location is used to segment the

human presence from the overhead thermal scenes. The second aim of this

analysis is to validate the possibility of parametrising the proposed framework
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Table 5.1: A comparison of the experimental setup, sensor placement, occupancy
estimation method and results of the proposed system with the state-of-the-art.

Paper/Method Ref. Sensor Placement Sensor Location Estimation Method Accuracy

Beltran et al. [91] TSA, PIR Non-adaptive Ceiling K-NN NA
Gomez et al. [93] TSA Non-adaptive Wall CNN 53.7%
Tyndall et al. [70] TSA, PIR Non-adaptive Ceiling K* algorithm 82.56%
Metwaly et al. [96] TSA Non-adaptive Ceiling ANN 98.90%

Wall AdaBoost.M2 98.43%
Proposed TSA Adaptive Wall ANN 93.75%

Ceiling AdaBoost.M2 100%
Ceiling ANN 58.33%

to predict more people in the scene. Therefore, the dataset collected for this

analysis contains more people compared to the previous experiments described

in Section 5.3.2.

The configuration of this analysis dataset is divided in the same way as the

vertical sensor dataset used in the previous experiment is divided with the same

classification and regression approaches. Regarding the classification approach

using the AdaBoost algorithm, the system achieves an accuracy of 100% in

estimating the occupancy from 1 to 4 different occupants moving in the thermal

scene. However, the system achieves 58.33% accuracy using a shallow neural

network to estimate the occupancy.

The AdaBoost algorithm’s classification approach shows high performance in

estimating the occupancy in different sensor locations and environments using

the proposed pre-processing, human segmentation, and post-processing

techniques. However, the regression approach shows a lower performance in

estimating the occupancy from the overhead thermal scenes. This was due to

the high uncertainty of the output of the regression model in the overhead

thermal scenes compared to vertical-based scenes. On the other hand, the

regression approach is a promising approach to estimate the occupancy in an

unsupervised learning problem in which the number of people is greater than

the number used to train the model.

Furthermore, the proposed approach of this thesis has been compared with

the state-of-the-art approaches. Table 5.1 shows a comparison of the proposed

approach and other notable works in terms of the experimental setup,

adaptability of the sensor placement, occupancy estimation technique, and
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experimental results.

5.5 Chapter Summary

This chapter has presented a novel approach to segmenting the human presence

from different sensor placements and estimates the occupancy of the

environment as the first functional phase towards enabling human behaviour

monitoring in a multi-occupancy domestic environment. The chapter has also

presented robust pre-processing techniques that have considered the TSA

characteristics and constraints. An empirical analysis of the human-to-sensor

signal has also been presented.

Finally, this chapter provides a robust analysis of the proposed technique

and assesses its generalisation ability. The next chapter presents the second

sequential functional phase to localise human subjects and extract their

physiological knowledge.
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Chapter 6

Human Localisation and

Physiological Knowledge

Extraction

6.1 Introduction

Extracting human-to-sensor and human-to-human distances based on human

physiological appearance is essential to developing a human behaviour

monitoring system that supports domestic multi-occupancy environments.

Human distance estimation is also vital in other applications, such as making

places safe by preventing the transmission of contagious diseases through social

distancing alert systems. This chapter proposes a novel approach to estimating

human distance for indoor human-centred applications using a low-resolution

TSA. The proposed system presents discrete and continuous human-to-sensor

distance estimators using classification techniques and ANN, respectively. It

also proposes a real-time distance-based FoV classification through a novel

image-based feature. Inspired by the results from this research stage, a novel

human-to-human distance estimator has also been explored in this chapter.

Besides, this chapter proposes a transfer application to the proposed continuous

distance estimator to measure human height.

The remaining parts of this chapter are organised as follows: Sections 6.2, 6.3,
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Figure 6.1: The proposed framework for estimating the distance between the
human presence and the thermal sensor array placement after applying a set of
techniques, which semantic segment the human presence, followed by a technique
to classify the FoV into distance-based regions, and finally output the predicted
human distance in the FoV.

and 6.4 explain the proposed framework architecture. Experimental results are

presented and discussed in Sections 6.5, and 6.6 followed by pertinent chapter

summary drawn in Section 6.7.

6.2 Enabling Human Distance Estimation

It is crucial to segment the human presence and count the number of people

from the TSA outputs to extract human-related distances based on their

physiological appearance. Following the proposed approach in Chapter 5 to

segment and count the human subjects in the TSA’s outputs, a schematic

diagram of the proposed human distance estimation approach is shown in

Figure 6.1. To recap, the proposed approach considers the TSA characteristics,

which are different from regular cameras. In contrast with regular cameras,

which are sensitive to light, TSA is not sensitive to light. Instead, the TSA is

more sensitive to environmental radiation than the camera, resulting in much

noise in the TSA images. For example, the edges of the human body in thermal

images obtained from TSA are not sharp. Moreover, the moving body in

thermal scenes changes the occupied area’s temperature and surroundings.

Therefore, although both the camera-based and TSA-based sensing generate

images, their processing techniques are different.

68



6. Human Localisation and Physiological Knowledge Extraction

Figure 6.2: Illustrative results of the pre-processing techniques, (a) the original
heat-map of a human holding a cup of coffee, (b) the heat-map after filtering
and interpolating the original heat-map, (c) the effect of the faulty filter on the
interpolated heat-map.

To enhance the resolution of TSA-based thermal images, an interpolation by

the 3 factor of the original thermal images is applied. By doing so, the

resolution of the obtained turns into 96 × 72 instead of its original size of

32 × 24. Concerning the distance estimation problem versus the TSA

characteristics, the minimum captured human temperature varies depending on

the sensor’s distance and the human location. Conversely, the maximum human

temperature can be determined from the closest point, which is 33◦C using the

MLX90640 sensor.

Based on this, any abnormally high temperatures, such as a hot kettle, can

be filtered. On the other hand, it is important to maintain the variance between

the minimum and maximum temperatures. So this proposed filter converts the

detected high-temperature values to the minimum temperature in the thermal

image itself rather than converting the abnormal human high-temperature

values to zero. To give an impression, Figure 6.2 illustrates the results of

applying the pre-processing techniques to TSA’s output. Figure 6.2(a) shows

the original heat map acquired while one person is holding a cup of coffee in the

sensor’s FoV. Figure 6.2(b) shows the result of applying interpolation and the

maximum temperature filter. Figure 6.2(c) shows a negative example of a

wrong, abnormal human temperature filter that converts high-temperature

values to zero instead of minimum temperature value in the thermal scene.

Although filtering the high-temperature values in the acquired heat-map to zero
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Figure 6.3: Distance aspect of thermal human presence at distances from 0.5m to
6.5m in a distance step of 1m, (a) male participant, (b) short female participant,
(c) a relatively tall male participant.

preserves the human presence in the foreground of the thermal image, it also

increases the thermal noise in the background as well as a loss of visual, thermal

information (e.g. the heat distribution within the human presence area). As a

result, after the pre-processing, the resultant TSA output is a one-channel

temperature matrix. These figures are generated by applying a colour mapping

scheme to visualise the TSA output better. Thus the last step of the

pre-processing is exporting the colour-mapped matrix into an RGB image to

enable the proposed encoder-decoder convolutional neural network to segment

human presence and estimate the occupancy as described earlier in Chapter 5.

6.3 Region Based Field of View

Based on geometry, it is possible to determine the distance, D, between the sensor

and an object if the object’s dimension, O, is known and the sensor’s FoV covers

the whole object. That is:

D =
O

2× tan
(
FOV
2

) (6.1)

However, this geometry does not apply to human-centred sensing applications by
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Figure 6.4: The number of occupied human presence pixels at the bottom of the
image versus human to sensor distance.

TSA as humans vary in body shape in the output images. Figure 6.3 shows a

visualisation of the TSA output used for three participants at distances ranging

from 0.5m to 6.5m with a step of 1m. From these three illustrative examples,

it can be observed at the distance of 0.5m that the participant in Figure 6.3(a)

had his head fully visible while this was not the case for the female participant

in Figure 6.3(b). Continuously for a relatively tall participant, e.g. in Figure

6.3(c), the head and parts of the upper body are sensed from the same sensor

placement. On the other hand, the human body begins to fully emerge in the

TSA output at a distance of 3.5m and beyond. This means the distance for the

first few meters is unpredictable using the above geometry, and to predict the

distance after 3.5m, the human dimension is required.

The human distance in the TSA field of view should be carefully estimated.

To achieve this, a novel image-based feature to solve this problem is proposed.

This feature is based on the observation that human presence diminishes in the

bottom rows of the thermal image as the human goes further from the sensor

location. Figure 6.4 shows an example of the bottom image rows of a human

moving from a close point to a point far away from the location of the sensor. It
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can be seen that the number of pixels belonging to the human presence located

at the bottom rows of the thermal image decreases as the distance between the

sensor and the human increases. Based on this, the sensor’s FoV can be classified

into distance-based regions, e.g. near, middle, and far regions depending on

the human presence’s location, using the number of occupied human pixels in

the bottom rows of the thermal image. Hence, this feature’s simplicity would

allow real-time applications to quickly obtain the human location and reduce the

processing time to compute the exact human distance estimate, as described in

the next section.

The human presence mask, which is a binary mask that corresponds to the

class (human or background) of each pixel in the obtained thermal image

generated by the proposed encoder-decoder convolutional neural network, is

used to determine the number of the occupied human pixels in the bottom rows

of the thermal scene by counting the last non-zero values in the mask. This

feature is then used to train a classification model to predict the region of the

human location in the FoV as described in Section 6.5.

6.4 Human Distance Measurement

In this section, the exact estimate of human distance will be computed after

finding the region of human presence in the sensor’s FoV, as described in the

previous section. Reducing the number of actual distance classes by categorising

the FoV into regions reduces the processing time and increases the proposed

estimation system’s performance. Thus, this section provides a detailed

description of the extracted features used to train and test the proposed

estimation models.

6.4.1 Human Physiological Feature Extraction

A number of TSA-based human physiological features have been extracted to

predict the exact human location and measure the human-to-sensor and

human-to-human distances. Figure 6.5 shows an evaluative example of the

effect of human-to-sensor distance on human temperature values captured by
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Figure 6.5: The effect of the distance on the acquired human temperature using
the TSA.

TSA. Specifically, the minimum, maximum, average, mean, median and

variance temperature of human presence from 0.5m to 6.5m with a distance

step of 0.5m. It can be seen that the overall trend of human temperature

decreases with the increase of the human-to-sensor distance. To further evaluate

the image, the entropy is extracted for each segmented human heat map

histogram using the following equation:

H(X) = −
n∑

i=1

P (xi) logP (xi) where n = histogram bins (6.2)

In addition to temperature-based features, human presence size was also
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considered to feed the human distance estimation model. Hence, it has been

previously shown that there is an inverse relationship between distance and the

size of human existence.

6.4.2 Human-to-sensor Distance Estimation

The first proposed human distance estimation technique is a regression to map the

extracted features x and the human-to-sensor distance using ANN. In particular,

Multilayer Perceptron (MLP) artificial neural network with one input layer, one

hidden layer with sigmoid neurons and one output layer is used. The weight

updating ∆wjk can be written as:

∆wjk(p) = η × yj(p)× δk(p) (6.3)

where p refers to the number of iterations used to propagate the error signal from

the output layer to the hidden layer. The gradient error δk(p) in the output

layer is determined from the derived activation function multiplied by the error

in the output layer neuron. Hence, η refers to the learning rate. In this chapter,

the network is trained using the Levenberg-Marquart backpropagation algorithm

[170]. This algorithm tries to minimise the sum of the squares of deviations S(β)

of a set of pair n (xi, ŷi) of input heat-maps x and the sensor-human distance ŷ

by finding the parameters β of the model output f(x,β).

β̂ ∈ argminβ S(β) ≡ argminβ

n∑
i=1

[ŷi − f (xi,β)]
2 (6.4)

The detection of the validation dataset’s mean square error leads to the

termination of the training process. In a real-life scenario, there is an infinite

number of distance classes as one human could be at any distance in the

sensor’s FoV. Thus the aim of utilising this ANN architecture is to find a

continuous-based sensor-human distance estimate. However, a discrete-based

human distance estimation using the classification approach is also performed to

evaluate the extracted TSA-based features’ performance by having a specified

number of classes for every 0.5m up to 6.5m, making a total of 13 classes.
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Figure 6.6: Illustrative use case scenarios for measuring the physical distance
between two human subjects, (a) ∆d is less than 2m, (b) ∆d is 0m , (d) when
∆d is greater or equal to 2m.

6.4.3 Human-to-human Distance Estimation

The size of the inspection area captured in the FoV varies at different depth

distances, which means that the TSA covers a wider area at greater distances

than those at close distances. To measure the physical distance, the inspection

area’s size should be known at the specified depth of human presence. Therefore,

the second step after calculating the human-to-sensor distance is to find the size

of the inspection area on the depth of the human as follows:

a = 2× d× tan

(
FoV

2

)
(6.5)

where d is the human-to-sensor distance and FoV for the used TSA is 55◦ × 35◦.

Assuming a human subject is located 2m far from the sensor position, the

inspection area a at their location would be 2.08m × 1.26m. Since the

measurement unit for images is in pixels, the horizontal a is converted into a

pixel unit through dividing a by the horizontal image resolution, which is 32. In

the example where a human is located at 2m far from the sensor, each pixel in

the horizontal width of the image is equal to 0.065m. This process is repeated

to localise the human presence in the FoV for each human subject.

Figure 6.6 shows illustrative use case scenarios to measure the physical

distance between two human subjects. In Figure 6.6(a) the difference between

the sensor-human distances ∆d to both subjects is less than 2m. Also, ∆z,

which is calculated from the horizontal inspection area’s size a and the human

presence mask for each human subject, is not zero. Based on this, the physical
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Figure 6.7: Data collection stages from three different indoor environments, (a)
the sensor is placed on the wall to assess the performance of the proposed sensor-
human distance methodology, (b) the sensor is also placed on the wall, (c) the
sensor is on the ceiling to assess the generalisation of the proposed methodology.

distance p can be formulated as the hypotenuse in the Pythagorean theorem,

and thus its value can be calculated as follows:

p =
√
(∆z2 +∆d2) (6.6)

The second use case scenario is when ∆d is zero as shown in Figure 6.6(b).

In this case, the physical distance is ∆z itself. On the other hand, when ∆z is

zero, the physical distance is ∆d, as shown in Figure 6.6(c).

6.5 Experiments

To evaluate the performance of the proposed framework of human distance

estimation, experiments were performed using two different configurations of the

sensor’s placements. They were also evaluated from three different indoor

environments in the summer and winter seasons of the UK. The reason for

considering different seasons and different indoor environments is that the

indoor heating systems in the UK usually operate during the winter season. In

the summer months, neither heating nor cooling is used. These evaluations
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ensure a high generalisation ability for the proposed estimation system as the

TSA sensor is sensitive to ambient temperature.

In the first data collection configuration, the sensor was placed in a vertical

position with a height of 1.57m from the ground as shown in Figures 6.7(a) and

6.7(b). A total number of 703 thermal images were collected for 6 different

human participants at distances from 0.5m to 6.5m every 0.5m. During this

data collection stage, participants were asked to stand on these 13 different

distance classes to avoid the over-fitting problem during the algorithms’

learning and testing phases.

The second data collection configuration aims to assess the proposed distance

estimation system’s adaptability versus sensor placement and human data bias.

At this stage, the low-resolution thermal scenes of two new participants (male

and female) were acquired from an overhead sensor placement, as shown in Figure

6.7(c). The size of this dataset is 90. In total, 793 thermal scenes were collected

to conclude this chapter’s results.

6.5.1 Region Based FoV Experimental Results

The first experiment examined the proposed image-based feature to categorise

the sensor’s FOV into three regions based on the human-to-sensor distance. The

first defined region is from 0m to 2.5m, the second region ranges from 3m to

4.5m, and the last one is between 5m and 6.5m. The used dataset was

partitioned into 5 folds to protect against over-fitting, and the best overall

achieved accuracy was 76.8% using decision trees. Further, focused experiments

with the same data partition configuration were conducted on each user’s data;

Figure 6.8 illustrates the proposed image-based feature’s performance on six

different human participants. The confusion matrices shown in Figures 6.8(b),

6.8(e) are for female participants while Figures 6.8(a), 6.8(c), 6.8(d), and 6.8(f)

for male participants.

It can be noted from these figures that the proposed feature works relatively

better for male participants than females, with an overall accuracy of 91%,

while for female participants, the accuracy was 74%. This observation does not

necessarily imply that the heat signature differs based on human gender, but
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Figure 6.8: A visualisation of the participant-focused performance of the proposed
image-based feature to classify the sensor’s FoV into distance-based regions,
where (a), (c), (d) and (f) are confusion matrices for different male participants
while (b) and (e) are for female participants.

perhaps females tend to wear heavier clothing compared to males, and this

reduces the temperature perceived by TSA. On the other hand, females are

generally smaller in size than males, which means that their heat signature size

will be smaller than that of males.

6.5.2 Human Distance Estimation Experimental Results

The first experiment is a continuous estimation of human distance using ANN

from a vertical sensor placement described in Section 6.4.2. In this experiment,

the collected dataset was divided into two subsets. The first subset is the thermal

data obtained at decimal distances (0.5, 1.5, 2.5, 3.5, 4.5, and 6.5m). This subset

is used to train the proposed neural network to predict the sensor-human distance
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using the extracted feature vectors described in Section 6.4.1 as the network input

and the corresponding distances as the output. This network is then tested with

completely unseen data to predict the sensor-human distance. The data is from

the second subset at integer distances (1, 2, 3, 4, 5, and 6m). The median overall

error in predicting the distances was ±0.2m. Hence, since the trained network’s

output is a continuous distance value (not a labelled class), this approach is called

a continuous-based human distance estimation.

The same dataset is then used with 13 defined class labels (0.5, 1, 1.5,...,

6.5m) for all data participants obtained from the vertical sensor position. In

this experiment, various classification algorithms were used to evaluate the

performance of the proposed features. The dataset is divided into the training

and testing stages using cross-validation with 10 folds. Table 6.1 shows the

performance of these classification algorithms. The best-achieved accuracy was

96.8% using Cubic SVM.

6.6 Robustness Analysis

The robustness analysis contains two main experiments. The first experiment

evaluates the adaptability and performance of the proposed image-based feature

of a distance-based FoV with a different number of regions. In this experiment,

two regions were identified instead of the three suggested in Section 6.5.1. The

first defined region ranges from 0m to 3m, and the second region is from 3.5m to

6m. Reducing the number of defined FoV regions increases the overall accuracy

Table 6.1: A comparison of different classification algorithms to classify the
human-to-sensor distance with 10 cross-validation folds.

Classification Algorithm Accuracy (%)
Naive Bayes 63.3%

Tree 83.4%
Ensemble - Bagged Trees 90.8%

Kernel Naive Bayes 91.6%
KNN 96.5%

Cubic SVM 96.8%
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Figure 6.9: An overhead sensor placement, (a) the overhead image of a fixed-
moving human presence, (b) the impact of movement on the thermal human
presence, (c) a transfer application of the proposed distance estimator to predict
the human height.

from 76.8% to 95.4%. This increase in performance underlines the robustness

of the proposed real-time human localisation feature in terms of the FoV region

occupied. Besides, it shows low inter-class variation within the second region

between 3m and 4.5m with the other two defined regions in the previously defined

three regions. Thus the performance was lower prior to the merging of the second

region.

In the second experiment, the proposed ANN’s generalisation ability to map

between the extracted TSA features and the human-to-sensor distance was

assessed. This was achieved through testing the ANN, which is already trained

using data obtained from the vertical sensor placement, with completely unseen

data obtained from the overhead sensor position and new human participants.

The median error in predicting the male participant’s distance was ±0.07m and
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±0.66m for a female participant. Hence, during the data collection phase, the

female participant was wearing a headscarf, which reduced her acquired head

temperature. Further experiments were performed on the collected data to

analyse the impact of the thermal image quality on the performance of the

continuous human distance estimator. The fixed human presence had a

predictive error of ±0.01m while moving humans decreases the robustness of

the extracted features, resulting in a lower rate of prediction. Figure 6.9(a)

shows a stable human presence from a sensor placed on the ceiling of the room,

and Figure 6.9(b) shows the effects of human movements on the acquired

thermal human presence of the same human participant. Importantly, the

proposed approach for the estimation of human distance can be transferred to

extract human physiological features such as human height. Given a user case

scenario of overhead sensor placement, as shown in Figure 6.9(c). It is then

possible to estimate human height h if room ceiling height c is known using the

following simple geometry:

h = c− d, where d is the predicted human-to-sensor distance (6.7)

The robust analyses concluded that the proposed human distance estimation

using TSA has a high generalisation ability toward operating with different

experimental configurations. Besides, the proposed transfer application to

measure human height demonstrates the important impact of the proposed

distance estimators on other human-centred applications.

6.7 Chapter Summary

Following the previous chapter on adaptive TSA placement to segment and

estimate the occupancy. This chapter has presented a novel approach toward

enabling TSA to extract physiological-based human localisation knowledge. In

particular, human-to-sensor, followed by human-to-human distance estimation,

has been presented. The chapter also provided a robust analysis to assess the

generalisation ability of the proposed human distance estimators.
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Finally, a transfer application of the proposed human-to-sensor distance

estimator is explored to extract human physiological features, for example,

human height, from the TSA output. The next chapter presents the third

functional phase to fuse multiple TSA sensors toward enabling domestic

multi-occupancy human behaviour monitoring.
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Chapter 7

Thermal Motion Signal

Processing for Sensor Fusion

7.1 Introduction

The main limitation of deploying TSA-based Internet of Things (IoT) systems

on a large scale is the challenge of fusing multiple TSAs to cover a wide

inspection area, e.g. smart homes, hospitals and many other domestic

environments. On the other hand, objects that appear in the low-resolution

thermal images acquired from TSA have low intra-class variations and high

inter-class similarities, making the identification of overlapping regions through

matching a comparable template image in multiple images very difficult.

Following the work presented in Chapters 5 and 6 on occupancy and human

distance estimation to identify the multi-occupancy environment,

human-to-human distance, and human-to-sensor distance using single-based,

frame-by-frame, processing. This chapter intends to address the challenge of

enabling TSA to cover a wide inspection area by proposing a motion-based

approach to fuse multiple TSAs and learn the domestic environment layout to

enable further human behaviour monitoring applications to run in the cloud.

Besides, a privacy improvement on utilising these sensors in IoT-based

applications to meet the TSA privacy concerns raised in Chapter 5 is proposed.

The proposed fusion approach is evaluated with comprehensive experiments on
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Figure 7.1: A schematic diagram of the proposed approach for home layout
learning and multiple TSAs fusion through the analysis of apparent motion
patterns of moving subjects in the acquired sensors’ signals.

different sensor placements and domestic environment conditions.

The remaining parts of this chapter are organised as follows: Section 7.2

explains the proposed framework architecture. Comprehensive experiments and

analysis are presented and discussed in Sections 7.3, and 7.4 followed by the

chapter summary in Section 7.5.

7.2 TSA Fusion for Human Behaviour

Monitoring

The proposed approach, which is illustrated in Figure 7.1 consists of two main

stages. The first stage is called home layout learner, which enables the flexibility

of the proposed approach to work with different and complicated environments

by estimating the environment layout and the sensors’ placement to find the

flow of human movement in their domestic environment. This is achieved by

finding a sensor reference, which indicates the typical human movement flow in

multiple sensors’ inspection areas and the overlap between the installed sensors’

FoV by analysing the movement patterns of a single human subject moving in the

environment. Hence, the home layout learner stage will only run once (the first

time after installation) to identify which sensors are interfering with each other in

their FoVs. By doing so, the proposed approach is not only flexible to work with
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Figure 7.2: A visualisation of the relationship between the sensor FoV’s depth
and the inspection area.

different home layouts but also can reduce the computational time and resources

needed to cover a large domestic environment. Besides, the environment layout

learner can also determine the typical human movement flow in a simple domestic

environment, including rooms and large open halls with more than one sensor to

cover the inspection area. After the layout is learnt in the first stage, the second

stage is used for sensor fusion and identification of overlapping regions between

two or more TSA sensors.

A single TSA would not be sufficient to cover a wide inspection area. Figure

7.2 shows an illustrative diagram of the relationship between the sensor’s FoV

and the inspection area. It can be observed from this figure that the inspection

area is larger from a distance. Considering the FoV of the TSA sensor used in

our investigation, MLX90640, which is 55◦× 35◦. The size of the inspection area

at a different distance can be calculated as follows:

m = 2× d× tan

(
FoV

2

)
(7.1)

where d is the depth distance in the FoV and m is the inspection area. Assuming

d is 2m, then inspection area m would be 2.08m × 1.26m. The collected data,

which represents the thermal signature in the FoV, at time t with size C is

transformed from 1D linear vector xt = [xt1 , . . . , xtC ]
T to 2D grid format of
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Figure 7.3: The effects of human movement on the acquired thermal scene, (a) a
stationary human presence, (b) human hand movement, (c) thermal noise induced
by human movement.

size 32 × 24 resolution. A colourmap scheme is then applied to each of the

2D temperature metrics for visualisation purposes. A detailed description of the

remaining functional phases (pre-processing, motion analysis, sensors interference

learner, and identifying the overlapped regions) of the two stages is described

below.

7.2.1 TSA Signal Pre-processing for Human Motion

Learning

There are notable limitations to proceeding with the human motion-based

feature extraction on the output of this sensor. In particular, human movement

generates a thermal noise in the background scene, which can bias human

motion estimation by including unwanted background pixels. To illustrate this

on a thermal image of a stationary human subject shown in Figure 7.3(a).

Given the movement of the human hand shown in Figure 7.3(b), the acquired

thermal image after movement is affected by thermal noise induced by human

movement, as highlighted in Figure 7.3(c). This is a critical consideration in

multiple TSA use case scenarios from different sensor positions, for example, the

ceiling, where the human would be in direct contact with a background surface

such as the floor, would result in prolonged thermal noise lingering in multiple

acquired thermal images. To overcome this, an adaptive temperature

level-based thresholding technique to separate the human presence from the

thermal background scene is proposed on Ostu’s method [171]. Mathematically,
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the threshold k of separating each 2D temperature matrix xt into foreground tf

and background tb classes should minimise the intra-class variance σ2
w(k),

defined as a weighted sum of variances of the two classes:

σ2
w(k) = ωtf (k)σ

2
tf
(k) + ωtb(k)σ

2
tb
(k) (7.2)

where ωtf and ωtb are the probabilities of the foreground and background classes,

respectively separated by k, while σtf and σtb are the intra-class variances of these

two classes. The class probability ωtf , ωtb(k) is found from the L bins of thermal

image histogram:

ωtf (k) =
k−1∑
i=0

p(i) (7.3)

ωtb(k) =
L−1∑
i=k

p(i) (7.4)

In a binary classification problem, minimising the intra-class variance

(variation between multiple samples of a class) is equivalent to maximising the

inter-class variance (variation between classes):

σ2
b (k) = σ2 − σ2

w(k) = ωtf

(
µtf − µK

)2
+ ωtb (µtb − µK)

2

= ω0(k)ω1(k) [µ0(t)− µ1(k)]
2

(7.5)

which is exposed in terms of class probabilities ω and class means µ, where µtf (k),

µtb(k) and µK represents:

µtf (k) =

∑k−1
i=0 ip(i)

ωtf (k)
(7.6)

µtb(k) =

∑L−1
i=k ip(i)

ωtb(k)
(7.7)

µK =
L−1∑
i=0

ip(i) (7.8)

By computing ω and µ iteratively, and k for each thermal scene, the algorithm
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Figure 7.4: Illustrative results of the proposed pre-processing phase, (a) the
original temperature surface plot and its corresponding heat-map, (b) the result
of applying the temperature filter, (c) the result of separating the acquired
temperatures into background and foreground categories.

would separate the scene into background and foreground classes regardless of the

human-to-sensor distance. Hence, the larger human-to-sensor distances, the lower

human-acquired temperatures. However, the drawback of this method is when

the histogram is not bi-modal distribution and has, for example, three peaks like

a temperature much higher than that of a human temperature, such as a hot cup

of coffee, as shown in the representative surface diagram of Figure 7.4(a) and its

corresponding thermal image. To avoid this, a modification before applying this

approach is suggested by using a temperature filter to convert temperatures above

normal human temperatures to the minimum temperature of the thermal scene

(not zero, to maintain the variance of human and background temperatures).

This empirical value is set to be 33◦C by the designated TSA. The filtered value

is, therefore, as follows:

xt =

{
xi for xi <= 33

min(xt) otherwise
where xi = FIR (7.9)

Figure 7.4(b) shows an illustrative result of applying this modification filter

on the original acquired thermal scene shown in Figure 7.4(a), while Figure 7.4(c)
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Figure 7.5: An illustration of the motion vector based on optical flow, (a)
represents vertical movement upwards, (b) horizontal movement to the right, (c)
backward movement, (d) vertical movement downwards, (e) horizontal movement
to the left, (f) forward movement.

shows the result of the complete pre-processing phase.

7.2.2 Motion Analysis

The employed human motion analysis is based on extracting the apparent relative

motion vector between a human observer and the background scene, referred to

as the optical flow. The term optical flow can also refer to the distribution of the

apparent velocities of movement of brightness pattern in the scene. Technically,

the optical flow aims to find the motion pattern in terms of velocity and direction

between a sequence of two image frames obtained at times t and t +∆t at each

temperature value in the acquired heat-map (at every pixel in each pre-processed

thermal image). Figure 7.5 shows visible illustrations of extracted motion vectors

on different human movements’ directions. Accordingly, each movement has a

corresponding flow representation. Therefore, it is possible to use optical flow to

determine the direction of human movements.

In this thesis, Horn-Schunk algorithm [172] is used to estimate the flow for the

output of TSA in the form of velocity and direction. The flow of this optical flow

algorithm is formulated as a global energy functional E, which is then minimised.

This function for the 2-D thermal image is given as:
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Figure 7.6: The estimate of optical flow on the pre-processed TSA output, (a)
human moving horizontally, (b) human hand movement, (c) empty human scene.

E =

∫∫ [
(Ixu+ Iyv + It)

2 + α2
(
∥∇u∥2 + ∥∇v∥2

)]
dx dy (7.10)

where Ix, Iy, It refer to the derivatives of the thermal image temperature values

along with x, y, and time dimensions, respectively, V⃗ = [u(x, y), v(x, y)]⊤ is the

motion vector, and the parameter α is a regularisation constant. Hence, Larger

alpha leads to a smoother flow. The assumption behind this algorithm is that

there is no significant change in the lighting between two consecutive frames,

which refers to as Brightness Constancy Assumption. In other words, the colours

of the moving thermal objects should remain the same, regardless of the change

in temperature of these objects caused by the evolution of the sensor to human

distance. This justifies our proposed adaptive thresholding in the pre-processing

phase B to keep the human colours the same in the consecutive thermal image

frames regardless of any potential changes in the human-acquired temperatures.

Also, it is able to eliminate the background heat, which could be a moving thermal

noise generated as a result of human movement.

Figure 7.6 shows sample images on applying the optical flow estimation on

the pre-processed thermal images. Figures 7.6(a), 7.6(b) show the estimation of

the optical flow on the pre-processed TSA output when the subject is moving

horizontally and when there is a hand movement. Since the proposed

pre-processing technique aims to find a threshold in the temperature values of

the scene regardless of human presence, the relatively high-intensity pixels

(temperature) from the background scene appear in the foreground scene of the

image in non-human presence scenarios. However, this does not affect the
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optical flow estimation because these pixels have no motion, as shown in Figure

7.6(c). Hence, the length of each arrow represents the magnitude of the velocity.

7.2.3 Sensors Interference, Overlap Learning and Fusion

The layout learner uses the motion vectors extracted from the previous phase to

find the sensors that interfere with their FoV when enrolling on a new domestic

environment (sensors installation). This thesis proposes to find the sensors that

interfere with each other in their FoV and the time of the motion to find the

order of typical human movement flow by a threshold-based motion trigger for a

single occupancy movement. Considering a small home as an example, it requires

four TSAs (S1, S2, S3, S4). If S1 and S3 have motion velocities more noticeable

than the non-human presence scenes at the time of acquisition, this means that

these two sensors are interfering with each other. Besides, the motion sequence

order extracted from the outputs of the installed sensors collected at this stage

indicates sufficient information regarding the layout of the home, which would

be used to regulate the arrangement of motion vectors in the fusion phase for

potential human activity recognition applications.

Additionally, there is another situation about the fusion of the sensors in the

deployment stage: identifying multiple human subjects occupying the

environment is based on matching the motion vectors between interference

sensors at the time of acquisition to identify the subjects that may appear in

multi-FoVs. This has been achieved by finding the Euclidean distance between

moving objects in the interference sensors to be used as a feature in a binary

classification problem. Referring to the previous example of a small home with

four sensors (S1, S2, S3, S4), which has two interference sensors S1 and S3, the

matching between the motion vectors will only be performed for these two

sensors and not, e.g. S1 and S4, as these sensors do not interfere with each

other as referenced in the enrolment stage. Doing this will reduce the required

computational resources for the matching task and can overcome the situation

when similar human movements are performed simultaneously by different

human subjects, e.g. yoga, meditation, or prayers.

Figure 7.7 illustrates the proposed TSA’s fusion method of the extracted
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Figure 7.7: The fusion approach of multiple TSAs using the extracted motion
vectors. The approach proposes a privacy transmission of the monitored human
subject information to a central cloud platform by replacing the temperature
values with the extracted motion features.

motion vectors, which has the exact size of the TSA heat-map. The output of

this fusion method is a one commutative motion vector with the overlapping

motion from different sensors identified. Hence, the order of these motion

sequences is based on the obtained reference from the layout learner. Although

the TSA sensors do not produce any identifiable information about people, it

may still be a privacy risk to transfer their output to a centralised cloud

platform to enable further human-centric applications. Therefore, this thesis

proposes replacing the TSA output with the motion vector produced from the

fusion method.

7.3 Experiments

To evaluate the performance of the proposed methodology, comprehensive

experimental work was performed with different use cases and scenarios for

sensor positions to confirm the validity of the proposed approach in different

sensor placements. During data collection, the experimental home environment

was in multi-occupancy mode, which means that a human subject was

performing different activities of daily living, including walking, sitting,

standing, and lying in bed in the overlapping region of the sensors shown in

Figure 7.8 and another person was in a different sensor FoV. Therefore, this

section is focused on experimentally verifying the capability of the proposed
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Figure 7.8: Data collection stage, (a) sensors placed side by side at 90◦, (b)
sensors placed opposite each other, (c) sensors on the same wall, (d) sensors on
wall and ceiling.
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approach in identifying the sensor overlapped regions through matching

different human presence acquired from different TSA placements and

human-to-sensor distance on the basis of the moving object motion analysis.

Building on top of this, there would not be any problem in the case of more

than one human subject moving in a single sensor’s FoVs as the problem arises

when the same moving object (human) appears in two sensors’ output due to

overlapped FoVs. The size of the dataset collected to conduct these experiments

was 1530 image frames. A detailed description of the experimental results is

reported below.

7.3.1 Experiment 1

This experiment contains a human subject moving in the overlapping area of two

sensors placed side by side at 90◦, as shown in Figure 7.8(a). A third sensor was

installed in another room with a different human participant performing normal

activities. The extracted human motion vectors from these multiple sensors were

analysed by finding the distance between a set of maximum motion velocities for

each human participant in the outputs of the sensors. Figure 7.9(a) shows the

distance between the overlapped and non-overlapped regions based on human

movements.

Finally, the distance is then used as a feature in different classification

algorithms, including Logistic Regression, SVM, k-NN, and Linear discriminant

analysis (LDA). The performances of these algorithms were 87.9%, 89.6%,

85.2%, 87.9%, respectively. Hence, 10-fold cross-validation is used to avoid the

over-fitting problem and guarantee the trained model’s generalisation ability.

7.3.2 Experiment 2

Similar to the data collection settings of the first experiment, this experiment

contains human participants in different rooms, and the aim is to assess the

ability of the proposed methodology in distinguishing between overlapping and

non-overlapping regions when sensing interference occurs between opposite sensor

positions, as shown in Figure 7.8(b).
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Figure 7.9: Motion analysis between overlapping and non-overlapping FoV’s
regions with different human participants using data obtained from different
sensor placements, (a) sensors placed side by side at 90◦, (b) sensors placed
opposite each other, (c) sensors on the same wall, (d) sensor on wall and ceiling.

It can be observed from the corresponding visual analysis shown in Figure

7.9(b) is the distance between the magnitude of velocities for different human

subject movements is significantly higher than those obtained for the same human

subject at the opposite sensor positions. Utilising this distance measurement

in the classification algorithms achieves a performance of 92.2%, 92.2%, 89.4%,

90.1% using logistic regression, SVM, k-NN, and LDA, respectively.

7.3.3 Experiment 3

The TSAs could be installed on the same wall but at different heights, as shown in

Figure 7.8(c), for example, for human activity recognition for an adult occupancy

with a child or to always acquire the upper body of an adult person at the different

95



7. Human Thermal Behavioural Signal Processing for Sensor Fusion

sensor to human distance.

This experiment intends to assess the proposed methodology for such a use

case scenario. The performance of the proposed methodology using logistic

regression was 96.1%, SVM was 96.1%, k-NN was 87.9%, and LDA was 87.1%

with 10-fold cross-validation. The justification behind obtaining a better

performance on this sensor placement scenario is because the intra-class

similarity between the classes is high, as shown in Figure 7.9(c).

7.3.4 Experiment 4

The last experiment was designed to assess the proposed methodology on

completely different sensor positions, specifically on wall and ceiling sensor

placements, as shown in Figure 7.8(d). The performance of using the distance

measurement between the magnitude of velocities of the extracted motion

vectors, which is shown in Figure 7.9(d), achieves 92.1% using logistic

regression, 96.1% using SVM, 89.2% using k-NN, and 91.0% using LDA.

Table 7.1 provides a comparison of experimental results on identifying the

overlapping regions using multiple sensors and different sensor placements. It

can be concluded from these results that the proposed methodology provides

excellent analytical performance with different sensor placements and human

subjects. Besides, identifying the overlap regions from the same wall placement

provides the best performance among others. In contrast, the worst

performance result was reported in Experiment 1. The rationale behind this

lower performance in the side-by-side sensor placements is that a large portion

of human presence is missing compared to the other investigated cases, which

Table 7.1: A summary of experimental results on identifying overlapping regions
between multiple sensors with different sensor placements.

Logistic Regression SVM k-NN Linear Discriminant

Experiment 1 87.9% 89.6% 85.2% 87.9%
Experiment 2 92.2% 92.2% 89.4% 90.1%
Experiment 3 96.1% 96.1% 87.9% 87.1%
Experiment 4 92.1% 91.4% 89.2% 91.0%
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leads to a loss of motion features for the same human subject at a given time.

7.4 Robust Analysis

This section contains three additional experiments to validate the proposed

approach’s robustness to enable the fusion of multiple TSAs into human

monitoring applications. The first experiment aims to validate the proposed

technique to enhance the TSA privacy feature in IoT applications by replacing

temperature values with motion vectors for further human-centric applications

running on the cloud. Since TSA is proposed in this thesis for human-based

applications, this experiment is intended to verify whether human presence can

be determined from motion vectors without having to transfer temperature

values to a central cloud platform. In this experiment, 218 non-human frame

images were collected from noisy thermal scenes and scenes after the human

subject left and another 209 human presence frame images. The performance of

utilising the motion vectors in human detection using the classification

approach was 94.9% achieved accuracy using SVM with 10-folds

cross-validation. Hence, this result was based on the result of motion analysis of

each frame image, and the performance could be boosted by using all the frame

images at a specific time, e.g. every 1 second.

Figure 7.10(a) shows a sample of the distribution of the human temperature

values on x and y-axis while Figure 7.10(b) shows the corresponding magnitude

of velocities for the same pre-processed image frame. It can be observed from

these sample distributions and experimental results that human detection and

localisation can be computed using motion vectors without transferring the

complete thermal information to the cloud. On the other hand, some

human-centred applications may require the provision of human temperature

values. However, TSA is a low-resolution sensor, and the acquired temperature

varies depending on different conditions, e.g. human-to-sensor distance and

wearing heavy clothes. Therefore, in such applications, it is sufficient and

private to provide human temperature values from the acquired scene as

features (maximum, minimum, median, and average) rather than the full

picture of human temperature values to avoid human image construction on this
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Figure 7.10: A comparison of human temperature distribution versus the
corresponding motion vector for human detection and localisation application, (a)
the pre-processed thermal scene temperature values, (b) the velocity movement
magnitudes for the same acquired thermal scene.

Figure 7.11: A robust analysis of the effects of a moving-based thermal noise
generated by a domestic heater on the proposed sensor fusion approach, (a) a
data collection stage consists of two simultaneous placements of TSAs, (b) the
maximum velocities of the heat generated by a domestic heater from two different
sensor placements versus a sample of human movement.
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low-resolution sensing approach by a third party.

The second experiment aimed to further evaluate the proposed approach’s

practicality in a home environment where there could be circulating convection

heat from heating systems. In this experiment, two sensors were installed on the

top and opposite views of the heater, as shown in Figure 7.11(a). This

experiment considered the most complex motion-based thermal noise scenario

by collecting data from the cold-heater state to the hot state for more than six

continuous hours. The total number of thermal images collected for this

experiment is 145, 776 frames. Figure 7.11(b) shows the maximum motion

velocities of a subset sample of the collected data from the two heater views

versus a human movement.

Two important observations can be drawn from this experiment. First,

motion-based thermal noises do not affect the applicability of the proposed

approach to enable further human-centric IoT applications. Second, the

proposed methodology for TSA overcomes considerable challenges that appear

in temperature-based image processing techniques with this type of

low-resolution thermal images.

7.5 Chapter Summary

Building on the top of the work presented in Chapters 5, and 6 to identify the

multi-occupancy environment, human-to-human distance, and human-to-sensor

distance using single-based TSA processing. This chapter has presented a novel

approach to enable multi-TSA processing for human behaviour monitoring

through motion-based TSA fusion. The proposed approach is capable of

learning the domestic environment layout and identifying the overlap regions

between multiple TSA’s FoV.

To respond to TSA privacy concerns in domestic environments that have

been raised in Chapter 4, this chapter proposed an improvement of TSA’s

privacy-preserving feature. The next chapter examines the proposed

motion-based approach in a novel human-in-the-loop abnormal behaviour

detection.
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Chapter 8

Human-in-the-Loop Anomaly

Detection in Activities of Daily

Living

8.1 Introduction

To support the independent living of older adults in their own homes, it is

essential to identify their abnormal behaviours before triggering an automated

alert system. False alerts (false-positive) fall detection has not been addressed

thoroughly in systems that report abnormal human behaviours as emergency

alerts to the information support. Inspired by the result of Chapter 7, this

chapter proposes a novel human-in-the-loop fall detection approach in ADLs

through motion-based TSA series processing. The motivation for enabling a

human interactive model, fall detection confirmation, is to influence resource

efficiency by reducing false-positive alerts while keeping the false-negative fall

predictions as low as possible.

The remaining parts of this chapter are organised as follows: Section 8.2

explains the proposed framework architecture. Comprehensive experiments and

evaluations are presented and discussed in Sections 8.3, 8.4, 8.5, and 8.6 followed

by a chapter summary in Section 8.7.
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Figure 8.1: A schematic diagram of the proposed accountable human-in-the-loop
fall detection system based on optical flow feature extraction, where (a) the ADL
and human abnormal detection stage, (b) the human interactive interface to
confirm the TSA-based human fall detection.

8.2 Human in the Loop Fall Detection Using a

Low-resolution Thermal Sensor Array

The proposed approach, depicted in Figure 8.1, consists of two main stages: stage

(a) abnormal behaviour recognition in ADL, and stage (b) human interaction

interface. To detect abnormal human behaviours, the proposed system should be

capable of distinguishing between normal and abnormal human activities. When

a fall is detected, the proposed approach is accountable to the users to confirm

the fall to the information support by means of an emergency alert, a notification

to family members, etc. Human-based fall confirmation is provided by a mobile

application interface model, which requires the user to confirm TSA-based fall

detection to proceed to the alert phase. If the user does not confirm the fall, e.g.

due to the consequences of the fall, the system will automatically consider this a

human fall. Detailed descriptions of the functional phases of these two stages are

provided below.
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Figure 8.2: Effects of sensor position height on the acquired thermal human
presence, (a) a short participant, (b) a tall participant.

8.2.1 Sensor Placement for Fall Detection

Placing the TSA in an elevated position on the wall would acquire the upper

parts of the human presence in the sensor’s FoV but not the lower parts. Figure

8.2(a) shows the effects of sensor position height on the acquired thermal human

presence for a relativity short participant, while Figure 8.2(b) showing a taller

participant. It can be seen from these figures that significant human presence

has not been acquired for the short participant and is fully visible from short

height sensor placement. On the other hand, short height sensor placement has

observed some missing upper parts for tall human participants. Since this thesis

deals with low-resolution thermal imaging for fall detection, we propose the sensor

placement for human fall detection to be at a short height from the floor for a

wider inspection area. This will positively affect the efficiency of the proposed

approach by overcoming the human-sensor distance limitation. Hence, placing

the sensor in the middle of the wall height would only acquire the full human

presence at a relatively far human-sensor distance. Since this thesis deals with
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fall detection, getting the human presence on the floor is more important than

losing some parts of the upper human presence for relatively tall users.

8.2.2 Enabling Human Behaviour Recognition in the

Presence of an Animal Pet

An animal pet filter is introduced to eliminate animal pets from the TSA signals

since humans, particularly older adults, may own animal pets in single or multi-

inhabitant environments. The target of this filter is to remove the thermal noise

radiated by animal pets, whose bodies have similar temperatures to human body

temperature and are relatively larger sizes than the threshold specified in the

connected-component filter described in Chapter 5.

The input of this filter is the pre-processed TSA signal, which indicates the

Region of Interest (ROI) after applying the segmentation techniques discussed

in Chapter 5. Thus, this filter classifies each ROI into an animal pet or human

based on two different feature extraction methods:

The first method uses Principal Component Analysis (PCA) with 95% of the

variance. PCA is a linear technique for dimensional reduction based on a linear

mapping of the data from a high-dimensional space to a lower-dimensional

space. Mathematically, PCA is an orthogonal linear transformation that

transforms the data to the greatest variance as a new coordinate system using

the scalar projection of the data to lie on the first coordinate, which is referred

to as the first principle component, the second greatest variance on the second

coordinate, and so on. The transformation is described by a set vector of

weights w(k) = (w1, . . . , wp)(k) that transform each row vector x(i) of a data

matrix X with column-wise zero mean to a new vector of principal component

scores t(i) = (t1, . . . , tl)(i), where each of the p columns represents a specific kind

of feature (in this thesis, represents TSA signals), and each of the n shows a

different iteration of the experiment. The individual variables (t1, . . . , tl)(i) of t

computed by:

tk(i) = x(i) ·w(k)

for i = 1, . . . , n and k = 1, . . . , l
(8.1)
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Figure 8.3: Animal pet filter, (a) original heat-map, (b) regions of interest, (c)
heat-map after animal pet filter.

In order to maximise variance, the first weight vector has to satisfy:

w(1) = argmax
∥w∥=1

{∑
i

(t1)
2
(i)

}
= argmax

∥w∥=1

{∑
i

(
x(i) ·w

)2}
(8.2)

and

w(1) = argmax

{
wTXTXw

wTw

}
(8.3)

The principal component Kth can be found, first, subtracting the first k − 1

components from X

X̂k = X−
k−1∑
s=1

Xw(s)w
T
(s) (8.4)

Second, extract the maximum variance from the new matrix by finding the

weight vector:

w(k) = argmax
∥w∥=1

{∥∥∥X̂kw
∥∥∥2} = argmax

{
wT x̂T

k x̂kw

wTw

}
(8.5)

By doing so, the remaining eigenvectors of XTX, with the most significant

information, are determined by their corresponding eigenvalues. Hence, the

weight vectors are eigenvectors of XTX. The decomposition of X for full

principal components can be given as:
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T = XW (8.6)

In the second approach, the entropy method is used. The entropy of the

one-dimensional histogram of each ROI X is calculated:

H(X) = −
n∑

i=1

P (xi) logP (xi) where n = histogram bins (8.7)

The filter will remove the ROI (Figure 8.3(b)) from the heat-map, if the extracted

feature vector belongs to the animal pet class. Figure 8.3(c) shows the result of

applying this filter on the heat-map shown on Figure 8.3(a).

Finally, human subjects generate background thermal noise as a result of their

movements. This generated noise creates biased motion estimation. Therefore, it

is important to pre-process the TSA signals prior to human behaviour recognition.

TSA signal pre-processing for human motion analysis is provided and discussed

in Chapter 7.

8.2.3 Motion Feature Extraction

Two optical flow estimation methods are utilised to support motion analysis

and model evaluation. The first method proposed by Horn and Schunck [172]

is a sparse optical flow estimation algorithm that estimates the global optical

flow. The second algorithm is proposed by Farneback [173], a dense optical flow

estimation algorithm that computes the local optical flow of the movements in

the acquired scene. Given a particular object in motion at time t, with pixel

points x and y, displacement of the object by ∆x and ∆y over ∆t forms a new

image expressed as:

I(x, y, t) = I(x+∆x, y +∆y, t+∆t) (8.8)

considering Taylor series method of approximation:
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I(x+∆x, y +∆y, t+∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t (8.9)

hence:

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0 (8.10)

once it is dividing by ∆t

∂I

∂x

∆x

∆t
+

∂I

∂y

∆y

∆t
+

∂I

∂t

∆t

∆t
= 0 (8.11)

results in:

∂I

∂x
ux +

∂I

∂y
vy +

∂I

∂t
= 0 (8.12)

therefore:

Ixux + Iyvy + It = 0 (8.13)

where ux, vy indicate the velocity of the frame in the horizontal and vertical

directions respectively and the derivatives of x and y over time t are represented

by Ix, Iy, It. Hence, Equation 8.13 has two unknowns, u and v, which can

be solved using various mathematical methods. For instance, in the Horn and

Schunck (global optical flow estimation) algorithm [172], the velocity estimation

between consecutive motion frames is based on two assumptions: brightness and

smoothness. For consecutive pixels within two frames, shadows are neglected,

and the direction of pixels is the same. Under the smoothness assumption, the

derivative of u and v with reference to the x and y directions is calculated in

Equation 8.14. Therefore, the expression of this global optical flow estimation

can be expressed as follow:

E =

∫∫ [
(Ixu+ Iyv + It)

2 + α2
(
∥∇u∥2 + ∥∇v∥2

)]
dx dy (8.14)

where
∫∫

(Ixu+ Iyv + It)
2 dx dy indicates brightness constancy along x, y and t
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dimensions, while α indicates the weighing factor that determines the brightness

and smoothness values. (∥∇u∥2 + ∥∇v∥2)dx dy indicates derivatives of u and v

with reference to the x and y directions. The smoothness assumption is that all

pixels in a particular neighbourhood of a thermal image are observed to move in

the same direction.

In contrast to the global optical flow algorithm, the local estimation of the

optical flow [173] does not aim to solve the optical flow equation expressed in

Equation 8.13. Instead, it considers quadratic polynomial expansion. For each

pixel within an image frame, there is a polynomial approximation of the

neighbourhood. The velocity of a pixel upon displacement is determined by

minimising the error function e(X) of the neighbourhood area expressed in the

equation below:

e(X) =
∑

∆D∈D

ω(∆D) ∥AM(X +∆D)∆X −∆b(X +∆D)∥2 (8.15)

where D indicates the neighbourhood area, ∆X signifies the pixel displacement,

ω(∆D) indicates the Gaussian weighting function that calculates the degree of

the neighbourhood area. The higher the Gaussian weighting value, the closer

the target pixel. This thesis constructs three pyramid levels to support the

motion estimation between pixels with larger displacement in the local optical

flow estimation. A high pyramid level indicates high pixel displacement. A 0.5

pyramid scale is specified at each level, which defines the down-sampling rate

with three iterations and a neighbourhood size of 5.

Both optical flow estimations return the magnitude and orientation of the

movement in a sequence of frames. Since the proposed approach aims to analyse

the velocity and direction of objects in motion, no motion is observed for all

background static objects. It implies that the magnitude and orientation

vectors are low for static objects in the background. Therefore, each activity

obtains the highest k magnitude and its corresponding orientation during

feature extraction. The elimination of unnecessary background optical flow

vectors in the pre-processing phase makes the algorithm more robust because

the potential ambient thermal noise is filtered. A representation of optical flow
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Figure 8.4: An illustrative result of optical flow features on pre-processed TSA
output for a subset of the human fall motion sequence.

on a series of pre-processed low-resolution frames is shown in Figure 8.4. From

these frames, it is apparent that the optical flow can represent the human

motion pattern in terms of velocity and orientation, represented by the length

and direction of the arrows in the frames shown in Figure 8.4 respectively. In

this specific example, the pattern of human movements starts from up to down

until it reaches the inactivity state, which is demonstrated by the decrease in

human movement velocity in the last few frames.

8.2.4 Human Activities of Daily Living and Abnormal

Behaviour Recognition

To detect an abnormal behaviour (human fall in this study), the proposed system

should be capable of recognising associated normal ADL activities, e.g. walking,

standing, sitting etc. Therefore, two recurrent neural network architectures are

implemented separately, specifically, the LSTM [174] and Bi-LSTM [175] with

ADAM [166] and Stochastic Gradient Descent with momentum (SGDM) [176]

optimisation algorithms during the training phase to perform ADL recognition

including the fall detection. Hence, these two networks can perform a sequence

frame classification of the extracted motion vectors from the previous step, which

was the justification behind this classification approach in this work.

Each network architecture consists of input, hidden and output layers.

Unlike LSTMs, the Bi-LSTM network is designed to support both future and

past sequence training. Technically, A Bi-LSTM supports two LSTM layers,
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including forward and backwards, arranged parallel to each other. Therefore, its

operation is similar to the LSTM, except that the motion sequence of human

movement is passed in both directions during the training stage, described as

follows:

−→
h t = LSTM(xt,

−→
h t−1;

−→
W ) (8.16)

←−
h t = LSTM(xt,

←−
h t−1;

←−
W ) (8.17)

yt = [
−→
h t,
←−
h t] (8.18)

where yt specifies the output,
−→
h t,
←−
h t signify the forward and backward LSTM

layers,
−→
W and

←−
W signify the weights at the forward and backward LSTM layers.

Once a fall is detected, a human-interaction interface is triggered to ensure

that the proposed approach is held accountable by human confirmation

requirements before the fall is reported to the information support. In this

thesis, a mobile interface is used as a human-interaction interface that asks the

user in the form of an alert to cancel the fall during time t as shown in Figure

8.5. Suppose the fall is not confirmed within the specified time. In that case,

the system will automatically report the fall to the information support in the

mean of emergency alerts or notifications to family members, etc. This

human-in-the-loop approach for fall detection would enable to overcome

false-positive fall detection alerts, for example, to the emergency services while

keeping the false-negative fall detection as low as possible.

8.3 Experiments

To evaluate the performance of the proposed methodology, comprehensive

experimental work has been performed with different use classification networks,

optimisers and optical flow algorithms. The data collection stage consists of

eight participants (6 males and 2 females). The participants acted in fall

incidents during three activities of daily living, including walking, sitting from a
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Figure 8.5: A mobile-human interaction interface to confirm the detected fall
prior to reporting it to the information support to minimise the false-positive
alerts while keeping low false-negative cases.

standing position, and standing from a sitting position. Each participant

carried out a particular activity five times. A total of 1, 282 image frames were

captured as part of the dataset used for the experiments, which consisted of 226

falling forward image frames, 321 sitting, 288 standing and 447 walking frames.

A detailed description of the experimental results is reported below.

8.3.1 Experiments 1

The first experiment involves the identification of falls in the presence of all

other activities of daily living. The dataset is divided into 70% for training

and 30% for testing. Classification of Local optical flow extracted features using

LSTM with ADAM optimiser yields 91.6% compared to SGDM optimiser at
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Figure 8.6: A summary of experimental results for (a) detecting human falls
among all other ADLs, (b) fall and walk, (c) fall and sitting, (d) fall and
stand where FBLSTM indicates the classification of Farneback (local) optical
flow extracted features with LSTM, FBBi-LSTM indicates the classification of
Farneback optical flow extracted features with Bi-LSTM, HSLSTM indicates the
classification of Horn and Schunck (global) optical flow extracted features with
LSTM and HSBi-LSTM indicates the classification of Horn and Schunck optical
flow extracted features with Bi-LSTM.
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91.8%. On the other hand, the classification of Horn and Schunck optical flow

extracted features using LSTM with ADAM optimiser achieves performance at

99.4% compared to SGDM at 98.3%. Using a Bi-LSTM network to classify Local

optical flow extracted features with ADAM optimiser displays performance at

94.0% compared to SGDM at 84.9%. Finally, classification of Global optical flow

extracted features using ADAM optimiser yields performance at 99.7% compared

to SGDM at 86.3%. A summary of the results is shown in Figure 8.6(a).

It can be observed from Figure 8.6(a) that the ADAM optimiser gives better

performance than the SGDM for all sequence classification algorithms. Not to

mention, the Global motion extracted vectors are observed to provide better

motion features for classification. The ability of the Global algorithm to process

selected pixels within an image during motion estimations is an attribute of its

outstanding performance.

8.3.2 Experiments 2

To further evaluate the performance of the developed model, the second set of

experiments is performed. It includes two sets of activities, namely, falling

forward and walking. Similar to the first use case scenario, the performance of

the pre-processing techniques is evaluated for each experiment. A dataset of 673

thermal frames was used, which consisted of 226 fall frames and 447 walk

frames. Different optical flow methods are deployed and classified using LSTM

and Bi-LSTM with different optimisers ADAM and SGDM. Classification of

Local optical flow extracted features using Bi-LSTM with ADAM optimiser

yields 96.5% compared to SGDM at 86.0%. On the other hand, the

classification of Global optical flow extracted features using Bi-LSTM with

ADAM optimiser achieves performance at 35.1% compared to SGDM at 94.4%.

Using LSTM network to classify Local optical flow extracted features with

ADAM optimiser displays performance at 67.5%, compared to SGDM at 90.7%.

Finally, classification of Global optical flow extracted features using ADAM

optimiser yields 86.1% compared to SGDM at 65.2%. A summary of the results

is shown in Figure 8.6(b).
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8.3.3 Experiments 3

This experiment aims at identifying fall frames from a human sitting position.

A dataset of 547 thermal frames was used, which consisted of 226 fall and 321

sitting position frames. Similar to the previous scenarios, the performance of

various parameters, including pre-processing techniques, classification

algorithms, optimisers, and optical flow methods, is performed. Classification of

Local optical flow extracted features using Bi-LSTM with ADAM optimiser

yields 85.7% compared to SGDM at 91.0%. On the other hand, the

classification of Global optical flow extracted features using Bi-LSTM with

ADAM optimiser achieves performance at 61.0% compared to SGDM at 99.9%.

Using LSTM network to classify Local optical flow extracted features with

ADAM optimiser displays performance at 42.7%, compared to SGDM at 83.3%.

Finally, classification of Global optical flow extracted features using ADAM

optimiser yields 99.6% compared to SGDM at 55.8%. A summary of the results

is shown in Figure 8.6(c).

8.3.4 Experiments 4

Finally, the performance of the proposed approach is evaluated using fall and

stand frames. A dataset of 514 thermal frames was used, which consisted of 226

human fall and 288 standing frames. Classification of Local optical flow extracted

features using Bi-LSTM with ADAM optimiser yields 91.1% compared to SGDM

at 72.3%. On the other hand, the classification of Horn and Schunck optical flow

extracted features using Bi-LSTM with ADAM optimiser achieves performance

at 99.8% compared to SGDM at 94.5%. Using LSTM network to classify Local

optical flow extracted features with ADAM optimiser displays performance at

58.3%, compared to SGDM at 88.5%. Finally, classification of Global optical flow

extracted features using LSTM with ADAM optimiser yields 95.3% compared to

SGDM at 98.6%.

The results shown in Figure 8.6(d) indicate Global motion extracted features

with ADAM optimiser as the best performer during the classification of fall and

stand activities.
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Table 8.1: A comparison of evaluative experiments prior to applying the pre-
processing techniques using LSTM for motion sequence classification.

Optical flow algorithm optimiser Evaluation 1 Evaluation 2 Evaluation 3 Evaluation 4

Farneback SGDM 82.3% 57.8% 75.5% 59.6%
Franeback ADAM 96.2% 99.9% 98.3% 87.7%

Horn-Schunck SGDM 95.7% 98.7% 99.9% 45.2%
Horn-Schunck ADAM 97.8% 98.5% 42.7% 45.2%

Table 8.2: A comparison of evaluative experiments prior to applying the pre-
processing techniques using Bi-LSTM for motion sequence classification.

Optical flow algorithm optimiser Evaluation 5 Evaluation 6 Evaluation 7 Evaluation 8

Farneback SGDM 92.3% 80.9% 75.2% 57.2%
Franeback ADAM 91.6% 86.9% 69.7% 45.2%

Horn-Schunck SGDM 91.4% 98.1% 99.7% 98.6%
Horn-Schunck ADAM 84.5% 37.9% 51.0% 97.3%

8.4 Experimental Evaluation and Analysis

This section presents an evaluation of the conducted experiments versus the

proposed approach to validate the importance of applying the proposed

pre-processing techniques to the TSA’s output for human motion-based

applications. Therefore throughout these evaluative experiments, the suggested

pre-processing techniques are not applied to compare them with the results

described in Section 8.3. Hence, the same dataset settings were used to repeat

each evaluative experiment.

Tables 8.1, and 8.2 show the results of evaluating the proposed approach

prior applying the pre-processing techniques on conducted experiments

described in Section 8.3 using LSTM and Bi-LSTM, respectively. It can be

observed from these tables the application of the pre-processing techniques

offers an increase in performance of Global motion extracted features with

LSTM and ADAM optimiser from 97.8% to 99.4%. In addition, the

performance of Global motion extracted features with Bi-LSTM and ADAM

solver increased from 84.5% to 99.7%. Second, the performance of Local motion

extracted features with Bi-LSTM and ADAM increased from 86.9% to 96.5%

after applying the pre-processing techniques. Third, the classification of Global

extracted features with LSTM and ADAM indicates increased performance
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from 42.7% to 99.6%. Finally, the sequence motion classification of Global

motion extracted features with LSTM and ADAM optimiser indicates an

increase in performance from 45.2% to 95.3%. In addition, the classification of

Global motion extracted vectors with Bi-LSTM and ADAM optimiser indicates

increased performance from 97.3% to 99.8%.

It can be concluded from these empirical evaluations that using the proposed

pre-processing technique on TSA outputs for human motion-based applications

is necessary to achieve a high-performance and robust system against ambient

thermal noise or noises induced by human movements. Besides, LSTM performs

better than Bi-LSTM with ADAM optimiser in the conducted experiments.

8.5 Robust Analysis

The first robust analysis is with regard to the ability of the proposed approach

to perform human behaviour monitoring in the presence of an animal pet. A

dataset containing 81 ROIs for both the human heat-map and cat as a pet case

study has been collected to examine the robustness of the two utilised features

mentioned in Section 8.2.2 to distinguish between human and animal pet ROIs.

Four different classifiers have been used to examine the performance of PCA

and entropy features to distinguish between human and animal pet ROIs. The

PCA features show a performance of 50%, 75%, 95%, and 100% using medium

k-NN, cosine k-NN, Naive Bayes, and SVM, respectively. On the other hand, the

performance of these classifiers using entropy estimate shows 100% accuracy in

classifying heat maps into pet and human classes.

The second robust analysis is concerned with assessing the ability of the

proposed human behaviour monitoring for inactive human subjects. For

instance, abnormal sleep movements and behaviours are a subset of nocturnal

events that may occur while sleeping, waking, or transitioning into or out of

sleep. Nocturnal events can be demonstrated in single movements, repetitive

movements, rhythmic movements, and/or complex behaviours such as

sleepwalking. The visual output of the TSA shown in Figure 8.7 evident its

ability to detect a person’s sleeping position while lying in bed. This analysis

utilises the extracted motion vectors from TSA outputs rather than the human
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Figure 8.7: A visual demonstration of TSA’s ability to acquire the human sleeping
position.

Figure 8.8: Human behaviour monitoring during sleep, (a) TSA placement, (b)
A deterministic model to detect the interruption movement during sleep.

physical appearance to detect abnormal human movement during sleep. The

justification for using the extracted motion from a series of TSA outputs rather

than the TSA output per se is due to the fact that humans tend to cover

themselves during sleep. Thus most of their body heat will not be acquired by

TSA.

To evaluate the proposed approach to detect abnormal human behaviour

movement during sleep, a data set of 9988 continues TSA singles have been

collected. The sensor was mounted on the ceiling overhead the sleeping area as

illustrated in Figure 8.8(a), while Figure 8.8(b) shows the maximum human

movement velocity of the obtained TSA signals. Typically, low velocity

indicates no human movement and can represent a good quality sleep pattern,

while a higher velocity indicates human movement. In this line, the standard

variation S of the data has been computed to find a threshold-based

116



8. Human-in-the-Loop Anomaly Detection in Activities of Daily
Living

deterministic model to detect abnormal human movement by adding a

sensitivity of 0.9 to the standard variation (S = S + 0.9). Additionally, any

velocity value above the threshold (the blue dashed line) can be considered as a

human movement that could also mean abnormal human movement during

sleep. It can be seen from Figure 8.8(b) that the first 1000 TSA signals

represent continued human movement. However, the human subject tends to be

stable between 1000 to 6000 before it suddenly increases in the sequence

between 6000 and 6500. Besides, the signal returned stable, but with higher

velocity movement that could represent soft human movement in acquired

signals between 6500 and 9988.

8.6 Discussion

The acceptability factors for a deployable domestic human behaviour

monitoring solution that can meet the urgency of economic and societal

requirements of older adults have been identified in Chapter 1. In summary, the

system should be impactful, privacy-friendly, reliable, convenient, and

accountable. In this regard, fall detection is abnormal human activity that can

occur from standing, sitting or even unpredicted activity. This chapter has

addressed a valid issue concerning the users’ accountability to the system’s

decision. On the other hand, this chapter continues the research efforts on

TSA-based human behaviour monitoring to achieve the mentioned acceptability

factors. In particular, the use of low-resolution TSA has been claimed as a

privacy-preserving approach based on the assumption that no identifiable

information can be extracted from the raw sensor outputs. However, Chapter 4

has presented a linear relationship between low- and high-resolution thermal

imaging. Thus, low-resolution signals can be mapped to high-resolution signals

to extract human-identifiable information. Replacing the TSA’s signal output

with the proposed motion features enhances the privacy-preserving quality of

TSA-based human monitoring schemes.

Unlike conventional cameras, TSA is not sensitive to light, but it is sensitive

to ambient temperature. This thesis ensures the system’s reliability by

proposing appropriate pre-processing techniques to enable the proposed
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approach to operate in a noisy thermal environment. The proposed

pre-processing methods for analysing the motion of TSA signals have been

thoroughly evaluated to empirically validate their effectiveness through running

the recognition experiments with and without applying the suggested

pre-processing methods. Besides, the results of the used series-based learning

algorithms show the reliability of the proposed solution in detecting human falls

in various ADLs.

Although this chapter suggests placing the sensor at a short height from the

floor for a wider inspection area, this placement may have its drawbacks, such

as FoV being cluttered with home furniture. In this line, Chapters 5 and 6 have

already contributed to resolving issues related to sensor placement flexibility,

operating distance, and multi-occupancy environments. Furthermore, Chapter 7

has explored the ability of the proposed motion analysis to identify the motion of

the same human subject obtained from multiple sensors’ placements in a multi-

occupancy environment.

The rationale behind suggesting the smartphone as a human interaction

modality to confirm the detected falls is due to the fact that most people have

smartphones and would therefore be more apt to use the technology they

already have rather than adding an extra cost and effort with unfamiliar

modality. Besides, the proposed modality could be a feature of an existing

mobile healthcare tracking application, e.g., the UK National Health Service

(NHS) mobile app. However, some older adults may not have smartphones to

confirm the detection of abnormal behaviour cases that require urgent

responses. In this case, there are no restrictions to switching the confirmation

from a mobile notification to an automated landline call to confirm or cancel

the detected fall.
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8.7 Chapter Summary

This chapter has utilised the proposed techniques in the previous chapters to

propose a novel human-in-the-loop human abnormal behaviour detection in the

presence of an animal pet. Furthermore, this chapter provides a robust analysis to

examine the proposed approach’s potential to monitor inactive human subjects,

e.g., humans during sleep.

The next chapter concludes the thesis and suggests directions for future work

on monitoring human behaviour using TSA sensors.
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Chapter 9

Conclusion and Future Work

9.1 Thesis Summary

The work undertaken in this thesis has presented a range of novel contributions

for domestic human behaviour monitoring to enhance the usability of TSA

sensors in the field of Ambient Assisted Living. The proposed monitoring

scheme has overcome major challenges associated with TSA sensors, such as

static sensor placement, thermal noise, privacy, and limited inspection area, by

proposing a chain of novel frameworks toward a user-accountable behaviour

monitoring scheme. The privacy-preserving and the ability of the proposed

monitoring scheme to operate in a multi-occupancy with the presence of animal

pets confirms its potentially significant impact on various sectors, including the

healthcare sector, on the example of supporting the independent living of older

adults in their own homes.

The following sections in this chapter summarise the concluding remarks

drawn from the thesis and suggest directions for future research work.

9.2 Concluding Remarks

The research presented in this thesis has demonstrated the plausibility of

developing an accurate framework for monitoring human behaviour using

low-resolution thermal imaging. The research effort was carried out in five
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sequential phases. First, to understand the opportunities and limitations of

TSA by experimentally calibrating between low-resolution TSA and a

high-resolution thermal imager. The second phase focused on developing an

adaptive sensor placement scheme to segment and identify the number of people

in TSA signals. The third focus of this thesis has been to extract

physiological-based human localisation knowledge, such as human-to-sensor and

human-to-human distances, while the fourth phase has been to shift from single

TSA processing to multiple TSA processing through a motion-based sensor

fusion approach. Finally, a human-in-the-loop abnormal behaviour detection

system has been the capstone of the research effort. The following sub-section

outlined the findings of the thesis.

9.2.1 An Empirical Calibration with Privacy Assessment

of Low and High-resolution Thermal Imaging

The calibration results reported in Chapter 4 confirm the potential of TSA in

human behaviour monitoring applications due to its low cost and development

integration compared to commercial high-resolution thermal imagers. However,

potential thermography-based human monitoring applications should consider

the variation of human temperature acquired using different imaging resolutions

and human-to-imager distance. On the other hand, TSA is sensitive to thermal

noises, and thus, it is essential to perform robust pre-processing techniques suited

explicitly to this sensing methodology.

A regression model that uses an ANN to fit the low-resolution thermal signal

to the high-resolution signal has also been proposed to ensure the TSA’s privacy-

preserving capability. It can be concluded that identifiable human information

can be extracted from TSA’s output, and therefore security measures should

be in place to ensure users’ privacy in cloud-based applications. The proposed

regression model is also valid for enhancing the low-resolution thermal signal in

potential human-centred applications.
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9.2.2 Adaptive Sensor Placement for Human

Segmentation and Occupancy Estimation

A novel framework has been presented in Chapter 5 for adaptive TSA placement

to segment the human presence and estimates the occupancy from TSA signals.

The proposed framework is evaluated in different domestic environments, sensor

placements, human subjects, and learning techniques. From the obtained results,

it can be concluded that using a deep convolutional encoder-decoder network

with appropriate pre-processing and post-processing methods that consider the

characteristics of the low-resolution TSA is an objective approach for human

segmentation. Besides, the adaptive boosting classification algorithm provides

accurate results to estimate the occupancy in the proposed framework.

This chapter confirms that TSA’s human-centred applications should focus on

segmenting human presence rather than human shape detection. This is because

the intra-class variations in the human presence using the TSA are relatively high

compared to the normal camera with respect to the human-to-sensor distance and

sensor placement.

9.2.3 Human Localisation and Physiological Knowledge

Extraction

Chapter 6 presents novel human localisation techniques for human-to-sensor

and human-to-human distance estimators. Furthermore, A novel feature has

been introduced to classify the FoV into depth-based regions depending on the

human location in the FoV. The proposed approach has considered the

concluding remarks from Chapter 5 regarding the high intra-class variation in

the human shape by utilising the suggested human segmentation technique that

enables the proposed distance estimators to operate from adaptive sensor

placement.

A transfer application using the proposed human-to-sensor distance estimator

is presented to extract human physiological features (human height). It can be

concluded from the results obtained that the use of TSA could be an approach

for human-centred indoor applications.
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9.2.4 Human Thermal Behavioural Signal Processing for

Sensor Fusion

TSA sensor provides low-resolution thermal imaging, making it an excellent

approach for low-cost, privacy-preserving, and passive human-centred

applications. In contrast to high-resolution imaging, it is difficult to find a

comparable image-based reference to incorporate multiple TSAs to cover a wide

inspection area. Chapter 7 proposes a motion-based approach to integrate

multiple TSAs and identify overlapping regions in the sensors’ FOV. The

efficiency of computing time and resources is achieved through proposing an

environmental layout learner. Furthermore, this chapter proposes to replace the

temperature values acquired by the sensors with the extracted motion vectors

for further human activity recognition operating in a centralised cloud platform

to avoid re-configuring the human image by a third party.

Extensive experiments were performed to validate the proposed approach on

different sensor placement and motion-based thermal noise and a transfer

application of the proposed approach to detect human presence using motion

vectors without any temperature values.

9.2.5 Human-in-the-Loop Anomaly Detection in

Activities of Daily Living

The results of this thesis show that the TSA is capable of bridging the gap

between privacy and performance in human-centred applications, including fall

detection and ADL recognition. Chapter 8 proposes a motion-based approach for

human-in-the-loop fall detection using a low-resolution TSA output. Including a

human interactive model to confirm the fall detection results in a very positive

impact on reducing the false positive fall detection cases while keeping the false-

negative predictions as low as possible. By doing so, the potential deployability

and reliability of the system are enhanced as fewer false fall alerts are reported to

emergency or information support, resulting in a significant efficiency utilisation

of the resources.

Comprehensive experiments and evaluations were conducted to validate the
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performance of the proposed approach using local and global optical flow

methods, different motion sequence classification algorithms and optimisers.

The achieved results indicate that, in general, global optical flow estimation has

better performance results with the low-resolution TSA output. The use of

optical flow with this type of sensor overcomes the challenges of such sensors to

operate in a noisy thermal environment as ambient thermal noises have a

shallow motion velocity compared to human motions.

9.3 Future Work and Recommendations

Following the work undertaken in this thesis, this section outlines the potential

directions for future work:

• Inactive human behaviour monitoring. The detection of abnormal

human behaviour was considered in this thesis with human subjects who

are awake. Inspired by the results of this thesis to explore the possibility

of utilising the proposed scheme to monitor humans during sleep, future

work can be undertaken to predict the stage of sleep and sleep behaviour

disorder using Electroencephalography (EEG) as a calibrated reference.

• Human robot collaborative intelligence . This thesis has presented a

human-in-the-loop abnormal behaviour detection to enhance user

accountability and boost system performance. It would be an interesting

future research direction to build a human-robot collaborative intelligence

to confirm the detected abnormal behaviours.

• User Profiling. Future work could be undertaken to explore the

possibility of utilising the TSA to profile human subjects in a

multi-occupancy environment. The discussed motion analysis approach in

Chapters 7 and 8 could be the starting point to study the human gait

patterns with the aim of classifying human subjects into different age

groups or users of interest and users out of interest. This future research

direction will be a promising approach to achieving a ranking-based

anomaly detection system that categorises detected cases based on their
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associated risks or interests. For instance, a young human fall may not be

as serious as an older adult fall.

• Optimising the number of TSA sensors . One interesting future work

direction is to minimise the number of TSA sensors required to cover the

domestic environment. Technically, this is a set cover problem under the

umbrella of approximation algorithms to identify the smallest sub-collection

whose union equals the universe. Implementing such a solution in a user-

friendly application will help the system installers identify the number of

sensors required for a given environment, which significantly reduces the

installation cost.

• Pilot Testing. Comprehensive experiments with robustness analysis were

conducted to evaluate the performance of the proposed approach.

Nevertheless, this thesis has significant social and economic impacts on

various sectors, including the older adults’ community. In this line, it is

important to conduct a pilot testing of the proposed approach under a

real-time operating condition through the actual deployment of the

proposed approach in older adults’ homes for a period of time to evaluate

the feasibility, time, cost, risk, and performance of the proposed approach

before the widespread deployment.
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Table 9.1: A comparison of relevant thermal imagers costs.

Manufacturer name / Model Price per unit
Omron/ D6T-44L-06 £32.59
Melexis/ MLX90640 £44.49

FLIR/ T1020 £46,114.80

Figure 9.1: The interface, evaluation board, used to connect between the TSA
sensors and the PC during the data collection stage.
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Figure 9.2: The experimental setup to calibrate between different thermal imagers
discussed in Chapter 4.
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Appendix B - Further Elaborations on the Human Fall Detection
Results

Figure 9.3: A visual representation of the experimental results of human fall
detection among all other ADLs in the form of a confusion matrix, (a) using Bi-
LSTM with local optical flow with ADAM optimiser, (b) Bi-LSTM with the local
optical flow with SGDM optimiser, (c) LSTM with Global optical flow estimation
with Adam optimiser, and (d) LSTM with Global optical flow estimation with
SGDM optimiser.
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