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Abstract  

Cancer, a major health issue and one of the most common causes of death worldwide, arises 

through a multi-stage process that involves several genetic alterations (pathological, 

immunological, and physiological). Researchers are continually seeking to explore such 

alterations at the molecular level to gain knowledge that can be used for disease management 

and prevention, resulting in several large-scale transcriptomic technologies to estimate whole 

genome expression profiles for cancer. However, such analytical approaches generate 

massive volumes of data, which need careful processing to extract meaningful information 

using statistical and computational approaches. Some of these approaches have been 

dedicated to studying cancer through interrogation of pathway models based on molecular 

data and based on mining of the literature corpus to obtain deep insights which could help in 

drug discovery and the achievement of personalized medicine for cancer. These methods tend 

to address the dimensionality and complexity issues associated with large-scale technologies 

by presenting the data using signalling network models and pathway knowledge graphs. 

However, the possibility of identifying novel interactions and disease drivers remains limited, 

as most of these approaches are based on knowledge obtained from the literature through 

manual curation.   

ANN-based integrative data mining approaches have been successful in cancer research, 

coping with noise and dimensionality associated with high throughput data, allowing for the 

identification of novel interactions and drivers related to diseases. These drivers can be used 

as a panel for the classification of certain conditions or as targets for new therapeutic 

interventions.   

This project applies ANN approaches for pathway data mining through a series of analyses 

leading to the identification of key interactions associated with the TP53 pathway in cancer. 

The first analysis indicates the novel drivers associated with the TP53 pathway in colorectal 

cancer. The second analysis suggests common and unique predictors associated with the 

TP53 pathway in the Mutant- and Wild-type status of the TP53 gene using three cohorts: colon 

and rectum cancer (COADREAD), pancreatic cancer (PAAD), and stomach cancer (STAD) 

from cases in The Cancer Genome Atlas (TCGA).  
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This analysis also identified a panel of differential drivers associated with theTP53 pathway in 

the Missense mutation status of the TP53 gene for the investigated cohorts. The study 

integrates the findings and compares the ANN driver results with the existing pathway analysis 

tool, MetaCore. The final analysis revealed a panel of differential drivers associated with the 

TP53 pathway in the Wild-type state of the TP53 gene for the studied cohorts.  

Key terms: Transcriptomic data1, Artificial Neural Network2, pathway modelling3, TP53 pathway4, 

Predictors5, Drivers6, MetaCore7. 

 

Key terms descriptions: 1- Collective information of RNA transcripts, 2- Computational biology technique used for data analysis, 

3- A Guideline represent the order and the relationship of molecules involved in a certain cellular process, 4- A crucial signalling 

pathway involved in regulating cellular responses during stresses, 5- Inputs that used to indicate certain future outcome, 6- Inputs 

that lead or operate a certain cellular response in a specific situation, 7- A platform that assist scientist in analysis and visualization 

of genomic data.  
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CHAPTER 1 

GENERAL INTRODUCTION  

1.1. Cancer   

Cancer is a group of diseases arising from genetic alterations that occur in cells, causing 

dysregulation in key signalling pathways, with a consecutive formation of new cellular 

properties. Such appearances manifest excessive proliferation and resistance to cell death, 

which result in cancer initiation and progression (Hanahan & Weinberg, 2011). Most genetic 

alterations occur as mutations that lead to the activation of growth control genes (oncogenes) 

and loss of function in tumour-suppressor genes. Other modifications may involve DNA 

stability genes, which play an indirect role in tumourigenesis by increasing the mutations of 

other genes (Sever & Brugge, 2010). Specific oncogenes and tumour suppressor genes are 

continually being discovered and linked to various types of cancers. Emerging genetic 

information, and knowledge arising from it, enhance the understating of molecular 

mechanisms that lead to cancer, facilitating the introduction of new targeted therapies for 

cancer treatment. These targeted therapeutic protocols have enabled some tangible 

improvements and are of increasing importance in clinical practice, spurring increasing cancer 

research in the field of genome analysis (Yan et al., 2011).  

High-throughput technologies, such as DNA microarray and RNA Sequencing, allow the 

analysis of cancer genes on a large scale, assisting in identifying relationships between genes 

and building pathway models to gain insights into the mechanism of disease formation and 

progression. However, the interpretation of genomic data needs careful consideration due to 

the complexity and non-linearity of the techniques (Bernard & Wittwer, 2002). Several 

computational databases and statistical analysis tools have been developed to facilitate the 

interpretation of genetic information to improve clinical practice for cancer patients (Zou et al., 

2015).  

1.2. Gene expression analysis  

Gene expression analysis is the process involving the measurement of the expressed genes 

within the cell at a specific time. The expression of the genes requires several regulations, 

most of which occur during the transcriptional level; hence the expression of genes is used to 

indicate protein functions, with significant applications in cancer identification and 

classification. Researchers can distinguish cancer cells from normal cells based on the 

differences in the expression level of specific genes. They can also discover genetic 
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signatures, which can help in diagnosis, prognosis, and therapy prediction (Russo et al., 

2003).  

Different techniques can be used for gene expression profiling, which measures the amount 

of mRNA in the cells and uses it to indicate the transcribed genes. Figure 1.1 Provides a 

general overview of the most common methods. One of the formal methods is the polymerase 

chain reaction (PCR), which has been used to amplify a specific gene of interest and link it to 

a particular type of cancer. The method was then developed to reverse transcriptase (RTPCR) 

and then to real-time quantitative reverse transcriptase (real-time qRT-PCR). Although these 

methods are reliable and easy to apply in different research settings, they have a limited view 

of the cancer genomic complete picture.  

 

Figure 1.1: Overview of the steps for gene expression analysis  

q- PCR, microarray and RNA-sequencing are the common techniques used for gene 

expression analysis 

Source: created with BioRender.com  

Subsequently, high-throughput methods such as DNA microarray technology have been used 

to analyse gene expression patterns on a large scale (Bernard & Wittwer, 2002). In this 

technique, a collection of DNA fragments (probes) are fixed on a solid surface (glass slide) in 

an ordered manner. Then each probe is specifically hybridized with targeted genes derived 

from a biological sample. The signals produced from this interaction are quantified and 

normalized to be used as indications for gene expression. The technique is beneficial in 



 

3 

research settings, providing a way to discover novel cancer molecular subclasses (class 

discovery), compare different classes parallel to each other (class comparison), and identify 

relationships and predictions of therapeutic responses (class prediction).  

However, there are some challenges in using microarray technology, of which the foremost is 

the need for more laboratory standardization. Each laboratory has its handling and analysis 

procedures, which results in bias that limits the use of the data in consecutive retrospective 

studies. Different microarray platforms can be used for gene expression analysis, employing 

other protocols for preparing, synthesizing, and annotating probes and their hybridization. 

Consequently, it is difficult to compare data generated from different platforms, and it is difficult 

to merge data sets. Researchers have tried to overcome the issues associated with platform 

variations by performing careful data pre-processing and normalization (Tinker et al., 2006). 

In this study, we extend this by utilizing a parallel artificial Neural Network based data mining 

technique to enrich for biomarkers addressing a given question and then identify 

concordances between the enriched biomarker lists. Another common high- throughput 

technique that is also used for transcriptomic analysis of biological data is RNA sequencing. It 

involves extraction, fragmentation and conversation of total RNA from cells or tissue into 

complimentary DNA (cDNA). The cDNA is then sequenced using high-throughput 

technologies, such as Illumina systems. Which are then aligned to a reference genome to 

quantify gene expression levels. RNA sequencing provides more comprehensive and accurate 

transcriptomic data compared to microarrays hence it is gaining more popularity. There is also 

differences in data analysis pipelines between the two technologies. RNA-sequencing data 

analysis includes alignment, quantification, differential expression analysis, and the detection 

of alternative splicing and novel transcripts, whereas microarray data analysis typically entails 

normalization and statistical testing (Wang et al., 2009). 

1.3. Machine learning approaches for data mining  

1.3.1. General overview  

The Application of molecular biology techniques generates massive data with little biological 

interpretation. A common challenge for researchers is translating results generated by large 

molecular data matrices into a better understanding of biological processes relating to 

phenotype. There is considerable demand for approaches to analysing such data more 

efficiently and effectively. Statistical and machine learning approaches are the leading 

computer science techniques germane to this field (Grześ & Krętowski, 2007). Machine 

learning methods can be used for feature selection and classification from large matrices, 

rendering them suitable for comprehensive analysis of gene expression data. These 
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approaches can be generally classified as supervised (when the study is based on existing 

biological knowledge about the gene) or non-supervised (if no predefined knowledge is used 

and the analysis is completely based on the data pattern).  

Moreover, approaches for modelling gene expression data are continuously evolving. Each 

technique has unique strengths and weaknesses, which can serve the best in a specific 

research situation. It is up to researchers to select the analytical tools most commensurate 

with their particular needs based on the experimental design. Some of these tools are suitable 

for the comparative detection of gene expression patterns across multiple assays to discern 

better their biological functions and regulation, which leads to a better understanding of the 

disease (Narrandes & Xu, 2018). Others are helpful in investigating the entire components of 

biological systems to identify driver genes with high functional impact. In some research 

settings, these approaches could be used together to enhance the results and provide more 

meaningful insights from the data (Quackenbush, 2001). Moreover, machine learning 

approaches have advantages over other statistical methods due to their ability to handle high 

dimensionality and non-linearity associated with complex data. Machine learning approaches 

also offer adaptability by providing the option of parameter adjustment, which enhances 

classification performance. These advantages make them more appropriate for the analysis 

of gene expression data (Wuest et al., 2016).  

Figure 1.2 presents a general schematic overview of the use of machine learning for the 

analysis of gene expression data.  

 

Figure 1.2: Overview of machine learning environment 

Source: adapted from Grzes and Kretowski (2007), modified using BioRender.com 
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1.3.2. Clustering approaches  

The clustering of microarray data in biomedical research was pioneered by Michael Eisen et 

al. (1998). Clustering techniques can group genes based on their similarities in expression 

space, which can be visualized in a graph. They are a form of unsupervised machine learning. 

A cluster is represented by internal coherence and external isolation. The similarity between 

sets is defined using a distance measure, such as Euclidean, Cosine, Jaccard, or Edit 

distance. Clustering can be applied for multiple purposes, including identifying new disease 

subtypes and investigating mechanisms of gene regulation. By forming clusters, researchers 

can discover patterns in the data; however, these methods have limitations. They are very 

subjective as there are many algorithms for analysis and many ways to define the similarity 

that leads to different outcomes.  

In addition, clustering is not suitable for prediction studies. In cluster analysis, distance 

measures are used to distinguish between classes that cannot reflect the influence of the 

relevant genes. Furthermore, clustering is unsuitable for comparison studies as it cannot 

provide valid statistical quantification of gene expression. Researchers using average fold 

change cannot determine the exact variability of gene expression across samples (Simon et 

al., 2003).The following subsections present some of the commonly used clustering 

approaches. This class also includes the neural network approaches which will be described 

in details in Chapter 2.  

1.3.2.1. Hierarchical clustering  

Hierarchical clustering approaches are a group of techniques widely used for microarray data 

analysis. The idea is to assign genes into clusters based on their expression. At each step, 

the two closest sets are identified and joined to produce a final tree called a dendogram, which 

is then used to define a meaningful biological pattern. There are two ways of constructing 

dendogram: bottom-up, and top-down.  

Bottom-up dendogram construction (i.e., agglomerative clustering) assigns each gene to an 

individual cluster. The genes are agglomerated to produce small clusters, and the process is 

reiterated until one final cluster that includes all composite genes is produced. Figure 1.3 

represents a final dendogram arising from hierarchical clustering. The distance between 

clusters is calculated based on pairwise dissimilarities using one of four methods: (1) 

singlelinkage, which measures the minimum distance dissimilarities between clusters; (2) 

complete linkage, which measures the maximum distance; (3) average linkage, which uses 

the average of all distances of the points between two clusters; and centroid linkage, which is 

based on measuring the distance between cluster centroids (Chipman & Tibshirani, 2006). 
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Top-down (divisive) clustering is less commonly used. It starts with one cluster and continues 

splicing into subgroups by identifying the greatest dissimilarities between the clusters (Alon et 

al., 1999). Hierarchy clustering approaches had complexity and timing issues, especially when 

the number of hierarchies increases. Because of the intricacy and timing concerns with 

hierarchy clustering methods, especially as the number of hierarchies grows, it takes more 

effort from the user to make accurate predictions (Rezende et al., 2022).  

 

Figure 1.3: Dendogram presentation of hierarchical clustering 

Source: adapted from Pirim et al. (2012) 

1.3.2.2. K-means clustering  

K-means clustering can be used as an alternative to hierarchical techniques in cases where 

the number of clusters is known a priori. This method's principle is assigning genes randomly 

into a predefined number of clusters (K). After that, a calculation of the average expression 

profile (centroid) is done for each group. Then genes are regrouped from one cluster to another 

based on their proximity to the available centroid. Calculating centroids and regrouping of the 

genes is performed iteratively until optimization or convergence is reached, which is a state of 

no further improvement of cluster composition (Madan Babu et al., 2004). Total squared 

Euclidean distance is used for the calculation of the centroid and the distance between genes 

in the same cluster. The method can help in building new classifications based on previous 

knowledge, such as the classification of patients with similar disease phenotypes and different 

clinical morphology based on the expression profiles. However, the method requires 

predetermination of the cluster numbers and can generate different results due to the initial 

random assignment of the genes (Xu & Wunsch, 2010). The requirement of pre-setting the 

value of K before running the algorithm represents a weakness of the K means clustering. 
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Although there are methods for setting it automatically, the majority of these are based on 

multiple random centroids initializations (Botía et al., 2017).  

1.3.2.3. Self-organizing map (SOM)  

Also known as Kohonen’s self-organizing map, a group of nodes is created in this method, to 

which genes are assigned by proximity. The nodes are presented in a two-dimensional 

geometric space. Initially, a random gene is selected, and the nearest node (called a reference 

vector) is moved toward that gene; the other nodes are also adjusted based on how close they 

are to the selected gene. The process is repeated until no further adjustment in the positions 

of the nodes is possible. Then a final map of clusters represented by nodes and genes around 

them is produced. SOM has some advantages over K-means, including that it is flexible and 

more reliable. The number of final clusters is not necessarily equal to the starting one, as some 

of the nodes are without genes assigned to them and may end up being removed from the 

final map. However, SOM has some drawbacks. For example, you need to specify the number 

of clusters, which sometimes could be difficult, and it also requires similarity in behaviour 

between the nearby points to initiate the clusters (Madan Babu et al., 2004). Figure 1.4 

displays the principles behind K-means clustering and SOM methods.  

 

Figure 1.4: : K-means clustering and self-organizing maps (SOM) 

Source: adapted from Babu (2004) 
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1.3.3. Principal component analysis (PCA)  

PCA is a mathematical method used for data visualization and dimensionality reduction. It is 

also a form of unsupervised machine learning technique. Data variability is presented as an 

average set that summarizes the features of the data, and linear combinations of the original 

data are performed to produce a new set of variables (principal components) that can describe 

the data variability (Quackenbush, 2001). The most significant degree of data variability that 

can provide better separation of the data is named PCA1; the second presentation of data 

variability is named PCA2, and so on, until the maximum number of components is reached. 

The result is visualized in two- or three-dimensional plots that present the first few principal 

components. PCA can be used to explore the relationships between variables and to study 

the underlying processes in the data (Todorov et al., 2018). It is often used prior clustering 

techniques to determine the number of clusters. However, to enhance the quality of clustering, 

preliminary information about the data is still needed to choose the correct number of 

components (Yeung & Ruzzo, 2001).  

1.3.4. Classification approaches  

They were also known as supervised machine learning techniques. These methods use 

training data to recognize and characterize complex gene expression patterns. In these 

methods, models are first trained to distinguish the expression features of each class in the 

data and then assign each gene to its class, which can then be used for the classification of 

new genes that were previously unclassified. There are different clinical applications for 

classification approaches, including disease staging and stratification of patients to identify 

potential therapeutic responders. Classification techniques can also help in exploring new 

genes that are related to a known biological system, aiding in understanding mechanisms that 

lead to disease initiation and progression (Quackenbush, 2001). There are generally three 

broad types in this category; Support vector machines, tree-based approaches, which are 

described in the following subsections, and neural networks, which will be explored in chapter 

2, since they are the primary analytical methods in this thesis.  

1.3.4.1. Support vector machine (SVM)  

SVM is a supervised method used for the classification of the data by a maximal distance 

hyperplane, which defines members from non-members of certain classes. It is a popular data 

mining tool with a good performance on data with multiple attributes, even if fewer samples 

are available for training (Bhaskar et al., 2014). In SVM, data is presented in a higher 

dimensional space (feature space), in which the distance between classes is measured using 

Kernel mathematical function. In some cases, misclassification could occur in SVM due to 

data noise; SVM addresses this issue using a soft margin that allows training errors (Ringnér 
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et al., 2002). The method has been widely used for the analysis of gene expression data since 

an SVM could use previous biological knowledge from the training data to define the character 

of a given functional class and use this information to predict whether any additional genes 

could also belong to the class (Brown et al., 2000).  

1.3.4.2. Tree based approaches  

Tree-based tools are among the most popular machine learning tools applied in biomedical 

research because they are simple and easy to use, having good prediction performance with 

high-dimensional data. Decision tree models use tree-structured classifiers with the decision 

and leaf nodes. Although decision trees are mainly used for the prediction of outcomes based 

on specific data categories (i.e., classification trees), they can also be used where the data 

has continuous values (regression trees).  

In decision nodes, there are two main branches that represent the outcomes based on known 

categories, while leaf nodes show the final classification or the value of the examples. The 

idea behind these methods is an iterative partitioning of the data based on the value of a 

selected example. They usually start by defining a root node with a known value and use it for 

continuous defining of a corresponding branch until reaching a leaf node that has the predicted 

value of the example, which can be a classification or regression. Decision trees are helpful 

in data analysis. However, they are non-robust and have a low accuracy compared to other 

supervised machine learning methods. Also, the topology of the trees is unstable, as a 

minimum change in the attributes can lead to a totally different result (Chen et al., 2011).  

1.4. Systems biology and pathway analysis  

1.4.1. General overview and operational definitions  

Systems biology can be defined as “the study of complex interactions in biological systems 

and the emergent properties that arise from such interactions” (Du & Elemento, 2015). It 

encompasses multiple approaches aimed at exploring how biological entities interact and 

function within a defined system. Combining a detailed understanding of system components 

with a comprehensive analysis of the system in its greater context allows for the analysis and 

prediction of biological function (Kohl et al., 2000). Moreover, system biology analysis provides 

a useful way to address genome complexity in cancer. By modelling and integrating genomic 

data to view the full picture of how genes and pathways interact in cancer, system biology has 

a significant impact on the identification of novel properties (Werner et al., 2014).  

Several cancer research studies implemented systems biology-based analysis to facilitate 

cancer treatment, including biomarkers identification for the detection of therapeutic response 
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or optimization of treatment dose (Du & Elemento, 2015). Other studies used a pathway model 

for the representation of the biological processes in which genes and their products interact in 

an ordered manner to achieve certain biological functions (Mitrea et al., 2013). Biologists use 

the term “pathway” to provide a description of specific biological processes. Demir et al. (2010) 

defined a pathway as “a set of interactions between physical or genetic cell components, often 

describing a cause-and-effect or time-dependent process, which explains some observable 

biological function.” The term “network” is also used in a technical sense to refer to integrative 

analyses of multiple datasets to gain insights into biological systems (Creixell et al., 2015).  

1.4.2. Computational approaches for pathway analysis  

A significant interest in the pathway and computational network analysis has emerged in 

cancer research. Pathway modelling is important because it reflects the biological relevance 

of genes under investigation and helps make predictions about cellular processes in health 

and disease. The power of pathway modelling relies on its ability to extract meaningful 

biological knowledge associated with a particular phenotype from a list of differentially 

expressed genes. Since genes that are differentially expressed often participate in common 

pathways, and the alterations observed either enhance or suppress the pathway activity, it is, 

therefore, crucial to identify pathways involved in cancer and detect their mechanism of 

alteration. This can give an indication about certain phenotypes, which could help in disease 

diagnosis and personalized treatment (Vaske et al., 2010).  

Hence, several computational approaches have been innovated with the potential to improve 

the investigation and representation of the entire components of pathways and to identify 

driver genes with high functional impacts. Moreover, computational models provide essential 

insights into pathways that drive disease progression, and they can be used to test hypotheses 

and make predictions. Khatri and Drăghici (2012) provided a general overview of the existing 

pathway analysis methods and generally grouped the methods by the type of analysis into 

three major classes: over-representation analysis, functional class scoring, and pathway 

topology-based methods. The following subsections explain these classes, as depicted in 

Figure 1.5.  
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Figure 1.5: Overview of common pathway analysis approaches 

Expression data used as input for all pathway analysis methods. ORA methods use 

differential gene expression analysis, while FCS use a whole data matrix, and PT-based 

methods consider the type and the number of genetic interactions  

Source: adapted from Khatri and Drăghici (2012) 

1.4.2.1. Over-representation analysis (ORA)  

This class aims to evaluate a set of genes within a particular pathway found among a set of 

differentially expressed genes. They were created primarily for the computational detection of 

somatic mutations, facilitating the comparison of a set of mutated genes to a known pathway 

from databases to identify overlap using statistical testing. If the overlap is statistically 

significant, the list can be considered enriched in relation to the prospective pathway. These 

methods also use statistical measurements to assess random errors, including Fischer’s exact 

and hypergeometric tests (Dimitrakopoulos & Beerenwinkel, 2017).  

Gene ontology (GO) uses an over-representation statistical approach (ORA) to categorize 

differentially expressed genes to certain functional classes (GO categories) by comparing the 

number of genes found in each category of interest with the number that may occur by chance; 

the class is considered to be significant if the number reported is substantially different from 

the one that may be assumed to occur randomly. This approach can provide general biological 
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themes in the selected genes, but detailed analysis is not offered by this method, as this would 

result in a vast number of gene categories, which would be untenable to collate and analyse. 

Furthermore, putting genes into selected classes could cause important gene patterns to be 

lost. Moreover, the decision to put genes in a certain class is based on a certain threshold, 

which means that the class could change if the threshold itself changes. There are many tools 

that use GO methods for pathway analysis, including DAVID, GoMiner, and GOToolBox.  

A broad review of ORA methods reveals shared limitations, including the use of a threshold 

method to define the most significant genes. With this method, some information about the 

marginal and less significant genes could be missed, and ORA methods need to consider 

overlapping pathways or enable the evaluation of each gene individually. (e.g., to consider the 

interactions between different candidates within a pathway).  

1.4.2.2. Functional class scoring (FCS)  

This class analyses a whole data matrix as an input and assumes that coordinated weaker 

genes may also have significant impacts on pathways. FCS performs computational analysis 

at the gene and pathway levels, using different statistical methods, including analysis of 

variance (ANOVA), T-test, and Z-score. The most commonly used approach for the analysis 

of gene expression data is gene set enrichment analysis (GSEA), which is based on a 

functional class scoring (FCS) statistical approach. FCS considers the functional relation 

between the genes by including all gene expression values. Subramanian et al. (2005) used 

GSEA to identify over and under-expressed genes in a particular dataset in comparison to a 

predefined gene list. The list was already linked to a certain biologic pathway based on 

previous knowledge.  

The method was further refined to create a software package that can be run as a desktop 

application, and it has subsequently been widely used as a common tool for pathway 

enrichment analysis. It has been valuable for the interpretation of large volumes of biological 

data, but GSEA uses FCS analysis such that it treats genes that have the same rank equally, 

even if there is a considerable variation in their expression. GSEA also has the limitation of 

ORA methods in being based on curated pathways identified from previous literature, thus 

making it impossible to predict novel pathways. This is because it is tied to previous knowledge 

of cancer pathways, disregarding the crosstalk between different pathways by considering 

them as specific groups (Subramanian et al., 2005).  

1.4.2.3. Pathway topology (PT) methods  

PT methods provide details about the interaction between gene products by answering how 

and where questions to provide information about the nature and the position of the genetic 
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interactions. PT-based methods use the same framework as FCS, but they utilize pathway 

topology to perform the statistical calculation at the gene level. Examples of these methods 

are Reactome, Panther, and Kyoto Encyclopedia of Genes and Genomes (KEGG). These 

were developed to overcome the primary challenge of pathway analysis by providing 

repositories to collect and present the complex mechanisms of the pathways and to facilitate 

the analysis and modelling of large biological systems. In these approaches, genes are 

represented as nodes, and the interactions between them are represented as edges. These 

approaches are based on known knowledge from literature, and they use available databases 

to identify significant pathways of a given gene expression data. Moreover, an impact analysis 

model proposed by Draghici et al. (2007) based on the calculation of an impact factor can 

identify pathways that are significantly changed in a certain condition. It has the advantage of 

including some biologically meaningful changes on a given pathway, such as the magnitude 

and position of differentially expressed genes within a pathway. The method has been 

developed and published as a web-based tool (PathwayExpress).  

1.4.3. Graphical methods  

Several algorithms have been implemented for the analysis of cellular networks using graph 

methods for data integration and network modelling, whereby cellular components are 

presented as nodes, and the interactions between them are presented by edges. For instance, 

gene regulation networks can be graphically modelled with transcriptional components being 

presented as source nodes and regulated factors as sink nodes. This type of graphical 

representation helps in understanding the topology and function of cellular networks and 

allows for the prediction of new biological hypotheses, such as exploring new interactions that 

can be tested using laboratory experiments (Aittokallio & Schwikowski, 2006). Moreover, 

mathematical models are used for iterative reconstruction of the network, which provides a 

more detailed and accurate prediction of the network properties (Papin et al., 2005). 

Databases such as STRING (Franceschini et al., 2012) and GeneMANIA (Warde-Farley et al., 

20110) are commonly involved with this type of analysis.  

Moreover, Leiserson et al. (2015) developed HotNet2, a network-based algorithm used to 

analyze data from The Cancer Genome Atlas (TCGA) of 12 cancer types. In this method, a 

directed network heat diffusion model is used, in which genes are presented by nodes and 

genetic interactions by edges. A heat score is assigned to each gene according to the 

frequency of alteration, and heat diffuses to other nodes in the networks across the edges. 

Thus nodes that receive significant amounts of heat based on (statistical modelling) are 

reported. The method identifies genetic combinations and provides new insights into the 

interactions between genes in well-known cancer signalling pathways on a large scale. 
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However, the presence of highly mutated and highly connected genes in the network 

generates extremely hot nodes, affecting nearby nodes and leading to false positive results, 

limiting the accurate detection of rare mutations.  

Several software tools have been implemented for graphical network visualization, including 

Cytoscape, MetaCore software from Thomson Reuters, and Ingenuity Pathway Analysis. 

These tools allow for construction and visualization of multiple pathways and are helpful in the 

interpretation of biologically significant results and in drawing conclusions. However, there are 

some challenges associated with this analysis. The method uses linear modelling, which 

cannot cope with the multi-directionality of real genetic interactions. Data from different cancer 

types are also merged, which limits the specificity of the results (Leiserson et al., 2015).  

1.4.4. Biological knowledge-based approaches  

PathOlogist approach uses structural pathway knowledge to quantify the nature of interactions 

in a pathway. The method estimates the probability and constancy of interaction in three steps: 

(1) estimating functional activity/inactive genes based on their mRNA expression values using 

clustering algorithms; (2) determining interaction activity; and (3) estimating the overall 

average of active interactions and using this as an indication for the activity and consistency 

of the whole pathway (Efroni et al., 2007). Moreover, Tarca et al. (2009) developed Signalling 

Pathway Impact Analysis (SPIA) to capture the impact of gene expression changes on a 

pathway, addressing issues in methods known for overrepresentation, such as GSEA, which 

identify the significance of differentially expressed genes in a pathway.  

SPIA added a perturbation analysis, which considers the impact of differentially expressed 

genes in the pathway by considering their position and assuming that expression changes in 

a rooted gene (that influence several interactions) within a pathway could be highly significant 

than changes in a leaf gene (which has no influence on other interactions). Vaske et al. (2010) 

proposed a method called Pathway Recognition Algorithm using Data Integration on Genomic 

Models (PARADIGM) to infer patient-specific pathway activities by integrating cancer 

genomewide data obtained through multiple multi-omics technologies into a pathway 

framework. The model utilizes curated interactions from pathway databases and converts 

them into a graphical factor model, integrating information that describes states of cell 

components (e.g., mRNA level) with known interactions.  
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1.5. The TP53 pathway 

1.5.1. Structure and function  

The human TP53 gene is located at the short arm of chromosome 17(17p13) and spans about 

20KB of DNA. The TP53 protein comprises 393 amino acids and four functioning domains 

(May & May, 1999). The TP53 protein was originally identified by Lane and Crawford (1979), 

while conducting research on the effect of a Simian virus 40 (SV40) antigen on tumour bearing 

host cells. They observed a cellular protein with an apparent molecular mass of 53KDa, named 

TP53, and they concluded that TP53 interacted with SV40 antigen (Lane & Crawford, 1979). 

Subsequent studies indicated that the TP53 protein is a growth regulatory molecule and a cell 

cycle dependent protein (Louis et al., 1988; Milner, 1984; Reich et al., 1983).  

TP53 acts as a transcription factor to regulate multiple downstream genes. The protein is 

highly expressed in response to several types of stress signals, such as oncogene activation, 

DNA damage, and hypoxia. Harris and Levine (2005) defined the active TP53 gene by its 

ability to bind specifically to the promoter region of the targeted genes, which results in 

increasing the half-life of the protein from around 30 to 150 min on average. Activation leads 

to the expression of mediators and core regulatory genes to produce a variety of cellular 

responses, including cell-cycle arrest, DNA repair, and apoptosis. Each of these responses is 

generated through a specific signalling pathway. Figure 1.6 shows these functional pathways 

and illustrates the interpretation of the signals through different downstream regulatory genes.  

   



 

16 

  

Figure 1.6: Schematic representation of TP53 pathway 

Multiple stress signals activated downstream mediators and core regulatory genes to produce various cellular responses. Source: adapted from 

KEGG database.  
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There are factors which determine which of these responses will be chosen, including cell 

type, the nature of the stress signal, and the extracellular environment proteins. For example, 

excessive cell division triggers activation of the ATM and theTP53 genes to initiate cellular 

senescence response. Inactivation of the TP53 gene reverses this mechanism, and allows 

more cell division, which result in shortening of the chromosomal telomers and a massive cell 

death (Vaziri, 1997). The best characterized functions of the TP53 gene are cell cycle arrest 

and apoptosis, as discussed in the following sections.  

1.5.2. TP53-mediated cell cycle arrest.  

Kuerbitz et al. (1992) reported the Wild-type TP53 gene (WTTP53) as an important 

determinant of cell-cycle arrest following exposure to ionizing radiation (IR). The study 

indicated the effect of the TP53 gene alteration on human cell cycle progression. Although the 

study was primarily designed to study the WTTP53 gene, the authors decided to turn the focus 

of the study to demonstrate the inhibitory effect of the Mutant TP53 gene on the cell cycle in 

different cell lines. Since the original experiment suffered from growth and selectivity 

disadvantages occurring from the endogenous TP53 gene during the transfection of the 

WTTP53 into cell lines, Kastan et al. (1992) proposed a G1-cell cycle arrest pathway upon 

exposure to IR. The pathway involves the activation of ataxia-telangiectasia (AT) genes, the 

product of which leads to an increased TP53 level. The study also identified GADD45 as a 

downstream contributor to the pathway and highlighted the importance of TP53 for the 

activation of GADD45. However, the mechanism by which GADD45 induces cell-cycle arrest 

was not indicated.  

El-Deiry et al. (1993) introduced P21/WAF1 as an important downstream target of the TP53 

pathway and a potential mediator of the TP53-mediated growth inhibitory response. Although 

they did not clearly identify the role of WAF1 and the mechanism that led to growth inhibition, 

they used data from a contemporaneous study by Harper et al. (1993) to suggest that the 

WAF1 protein was coupled with the product of another gene, named CIP1, and this interaction 

blocked cell cycle progression by inhibiting cyclin-dependent kinase activity.  

Hermeking et al. (1997) demonstrated induction of the 14-3-3 σ gene as a result of the TP53 

activation following the treatment of colorectal cancer cell lines by DNA-damaging agents. The 

study showed that the 14-3-3 σ mediated a coordinated cell-cycle arrest by blocking the 

transition of the cell from G2 to the M phase. The mechanism involves binding of the 14-3-3 

protein to the CDC25C, and inactivation of an important cell cycle gene, cyclin-dependent 
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kinase (CDC2), which is required for the entry of the cell into mitosis. Figure 1.7 illustrates the 

model of TP53-mediated cell-cycle arrest.  

 

Figure 1.7: Model of TP53-mediated cell cycle arrest  

Growth inhibitory signal induced by the TP53 in response to DNA damage leads to activation 

of downstream genes that cause inactivation of cyclins and block the cell cycle  

Source: adapted from Hermeking et al. (1997) 

1.5.3. The TP53-mediated apoptotic response.  

TP53 promotes apoptosis in response to different stimuli, with mechanisms involving the 

activation of different targets that eventually lead to programmed cell death. There are two 

main apoptotic pathways in mammalian cells. The first is the BCL2-regulated pathway, also 

called the intrinsic pathway. In this pathway, cell death is initiated by the activation of 

proapoptotic members (NOXA, PUMA, PIM), which exerts an inhibitory effect on BCL2-

proteins (BCL-XL, BCL2-MCL-1). This leads to the activation of BAX and BAK and the 

generation of apoptotic signals, with the consequential release of mitochondrial cytochrome 

c, which binds to the apoptotic protease activation factor (APAF1). Many APAF1 molecules 

are aggregated together to form an apoptosome, which recruits and activates the caspase-9 

enzyme. This enzyme is responsible for the cleavage and activation of a series of other 

caspase enzymes, which collectively induce cell death. The second pathway is the death 

receptor pathway, also called the extrinsic pathway, which involves activation and cleavage of 

caspase-8 by FADD adaptor protein, leading to a consecutive activation of caspase-3 and -7, 

which eventually causes apoptosis (Aubrey et al., 2017).  

1.5.4. TP53 positive and negative feedback loops.  

There are gene products within the TP53 network responsible for autoregulation of TP53 

activity and pathway communication with other signalling pathways. These proteins can turn 

the TP53 protein on or off. Most of them function in a series of feedback loops involving the 

MDM2 protein (which effectively turns the TP53 protein on or off). Among these, three increase 

TP53 activity (p14/19ARF, PTEN-AKT, and Rb), and seven inhibit it (MDM2, TP73, Cop1, 

Pirh2, Wip1, Cycling, and Siah1). Another function of these proteins is to connect the TP53 
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pathway to the other pathways and regulate the signals for cellular growth. For instance, Wip1 

protein connects the TP53 to the Ras/Raf/Mek/Erk pathway through a negative feedback loop 

involving P38 MAP kinase (Takekawa et al., 2000); and Siah1 connects the TP53 to the 

Wntbeta-catenin-APC pathway (Harris & Levine, 2005).  

MDM2 proteins play a central role in the regulation of the TP53 activity. They are frequently 

detected in human tumours harbouring Wild-type (but not Mutant) TP53 (Oliner et al., 1992). 

The relationship between MDM2 and TP53 is bidirectional: TP53 acts as a transcriptional 

activator for the MDM2 gene, while MDM2 serves as a negative regulator of TP53. The 

formation of a TP53-MDM2 complex leads to ubiquitination and degradation of TP53. These 

bidirectional relationships are important for maintaining the balance of the two proteins and 

limiting the duration of the TP53 activity upon stimulation. Moreover, there are mediators which 

enhance the degradation of the TP53 by MDM2. Among them is Wip1 (Wild-type TP53 

induced phosphatase 1). This gene function as stabilizer for MDM2 and enhancer for the 

TP53/MDM2 ubiquitination (Lu et al., 2008).  

Furthermore, MDM2 promotes cellular growth through a mechanism involving 

phosphatidylinositol 3-Kinase (P13-kinase) pathway. The signal from this pathway enhances 

the movement of MDM2 from the cytoplasm to the nucleus, where it binds and inhibits the 

function of the TP53. This explains how mitogens could mediate cellular growth by modulating 

the TP53 function and highlights the possibility of regulating the TP53 gene by targeting 

components of PI3K/AKt pathway (Mayo & Donner, 2001).  

Upon oncogenic stimulation, MDM2-TP53 complex is negatively regulated by gene named 

alternative reading frame (ARF) gene. The inhibition of MDM2 by ARF leads to the induction 

of the TP53, which exerts a major function as an inhibitor of abnormal growth. The ARF 

stimulatory effect on the TP53 needs further investigation (Shi & Gu, 2012). Another inhibitor 

of MDM2 activity is 14-3-3 sigma, which exerts its effect by blocking MDM2-TP53 

ubiquitination and promoting the stabilization of the TP53 (Yang et al., 2003).  

1.6. TP53 pathway in cancer  

1.6.1. Role of TP53 in tumour suppression  

The TP53 protein has a crucial role in tumour suppression. Its ability to mediate apoptosis 

plays a significant role in tumour clearance. It acts as a sensor for a wide variety of oncogenic 

stress signals, to inhibit tumour development and to limit the propagation of cells under stress 
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(Vousden & Prives, 2009). For low-level stress, TP53 engages DNA repair and a temporary 

program of cell-cycle arrest to allow cells to pause and repair the damage; conversely, in 

response to more potent stimulus, TP53 induces cellular senescence. In other situations 

where the stress signals are severe or sustained, TP53 responds by activating components 

of the death pathways, including BAX, NOXA, FAS, and PUMA, which eventually lead to 

irreversible apoptosis or senescence.  

Another form of the tumour-suppressive activity of TP53 occurs through the inhibition of 

glycolysis and induction of oxidative phosphorylation in response to various metabolic 

stresses, including hypoxia and nutrient depletion. TP53 also limits cancer formation through 

autophagy or “self-eating”, which leads to cell death by activation of target genes, such as 

SESN1/2 and DRAM. TP53 has an antioxidant function that protects cells from the damaging 

level of oxygen species (Vousden & Ryan, 2009). Moreover, TP53 plays a role in the inhibition 

of tumour angiogenesis through upregulation of angiogenesis inhibitors, downregulation of 

proangiogenic genes, and inhibition of the hypoxia-sensing system (Teodoro et al., 2007). 

TP53 can exert its effect upon tumour stromal tissue to inhibit tumour growth and metastasis 

by increasing the ability of stromal fibroblast to secret tumour inhibitory factors and 

suppressing the production of tumour-promoting agents (Bar et al., 2009).  

Moreover, among TP53-family proteins, the TP73 and the TP63 genes are also involved in 

tumour suppression, and actively participate in the resulting cellular output. Through 

interactions with common and specific regulators, these family members function to govern 

apoptosis and cell cycle arrest during stress (Collavin et al., 2010). The TP73 and the TP63 

proteins have remarkable structural and functional similarities, but each has some unique 

specializations. It has been proposed that they could be required for stable binding between 

the TP53 and its targets, forming a large transcriptional complex holding all three proteins 

(Urist & Prives, 2002).  

1.6.2. TP53 mutation in cancer  

Inactivation and somatic mutation of the TP53 is ordinary in human cancers. The gene is 

mutated in 50% of human tumours, making it the most frequently altered gene in human 

cancers (Kandoth et al., 2013). Missense mutations are the most common type of TP53 

mutation, occurring as point mutations in the central domain of the protein, and leading to 

amino acid substitutions and the formation of the Mutant TP53 protein. The latter is more 

stable than the Wild-type TP53, and is often present at a high level in cancers (Vousden & Lu, 

2002). Aberrant TP53 loses its ability to suppress tumours and gain new functions that 
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promote tumourigenesis, such as increasing cellular proliferation, evading apoptosis, and 

therapy resistance. Figure 1.8 demonstrates the oncogenic properties of the Mutant TP53 and 

its underlying mechanism (Brosh & Rotter, 2009).  

 

Figure 1.8: Oncogenic properties of Mutant TP53 

The oncogenic phenotypes of the Mutant TP53 is represented in the inner blue circle, while 

the outer circle indicates mechanistic properties for each phenotype listed in the inner circle  

Source: adapted from Brosh and Rotter (2009) 

Moreover, the mutations in the TP53 have been linked to the gene expression patterns in 

human tumours, which can identify signatures that can be used as specific indicators for 

clinical outcomes in cancer. For instance, breast cancer harbouring TP53 mutation had a 

specific gene expression pattern, which might be used as a survival marker for breast cancer 
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patients. This association is strongly linked to certain classes, including the Basal-like 

molecular and ERBB2 amplification subgroup of breast cancer, wherein the TP53 mutation 

occurs as an early event in tumorigenesis. Patients under these classes experience a shorter 

survival rate compared to other disease classes. The detection of the TP53 mutation, together 

with specific gene expression patterns, may aid in distinguishing those patients at a higher 

risk of mortality (Langerød et al.,2007).  

Abdelfatah et al. (2010) proposed the combined use of certain gene candidates from the TP53 

pathway (MDM2/MDM4/BCL2 and P21) as prognostic markers for breast cancer. The study 

used the protein expression of these candidates for the assessment of breast cancer patients. 

Two main classes were obtained: the high-risk group, which has a good prognosis and a 

favourable clinical outcome, and the low-risk group, with a poor clinical outcome and shorter 

survival timing. However, the association of the TP53 mutational status with the clinical 

outcome in different types of tumours remains controversial. The majority (65-90%) of studies 

have linked TP53 mutation to poor prognosis in colorectal, breast, bladder, and haematological 

malignancies; conversely, in lung, ovarian, and brain cancers the pattern is different, as half 

of the studies reported no association between the TP53 mutational status and the clinical 

proprietaries. In addition, association with good prognosis is also noted in some cases (Brosh 

& Rotter, 2009).  

Mutant TP53 has become an attractive target in the cancer therapeutic era, and there is great 

interest in the selectivity between tumour and normal cells, as it increases the sensitivity of 

tumour cells toward therapy. Several therapeutic strategies have been developed to restore 

the function of Wild-type TP53. For example, the use of MDM2 inhibitors can inhibit the 

degradation of TP53 and enhance tumour regression by promoting cell death. However, as 

the TP53 function can act as a guardian and survival enhancer for cancer cells, restoration of 

the Wild-type TP53 is not always effective in cancer treatment. Indeed, in some cancer cases, 

this strategy can protect cancer from a certain type of cytotoxic drugs and is associated with 

poor response to treatment (Mandinova & Lee, 2011).  

1.7. Computational modelling of the TP53 pathway  

Several computational models have been innovated to study the TP53 network. These models 

refine knowledge and provide deep insight into the structure, mechanics, energy, and 

dynamics of both Wild- and Mutant-type TP53 in relation to other members of the TP53 

pathway (Tan et al., 2019). Although it seems challenging to gain comprehensive insights into 
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the TP53 network, various approaches have been developed and applied for network analysis 

in this context, which can generally be classified into interaction and mathematical models, as 

described in the following subsections.  

1.7.1. Interaction models  

Tuncbag et al. (2009) constructed a PPI network for hub proteins related to the TP53 pathway. 

The method used for this analysis is named Protein Interactions by Structural Matching system 

(PRISM algorithm). It was used to predict structural similarity and potential interactions that 

can occur within the pathway simultaneously. The authors presented the concept of integrating 

time into the interaction network and assumed that some genes with different binding sites 

could interact contemporaneously with the TP53 gene while others that have similar binding 

sites could not. The method included structural information about the network and was useful 

in assessing part of the pathway functionality. However, PRISM algorithm uses data from the 

protein data bank, which means it does not consider the possibility of novel or indirect 

interactions. Csikász-Nagy et al. (2006) proposed a protein interaction network to model the 

activity of cyclin-dependant kinase in eukaryotic cells and the proteins that regulate them. The 

model presents a primary understanding of the cell cycle network across species.  

Toettcher et al. (2009) combined a computational network with an experimental study to 

determine distinct mechanisms that mediate cell cycle arrest and re-entry in response to 

damage. The study found that specific mechanisms act to achieve arrest after damage and to 

stop improper cell cycle re-entry. However, the model was originally built to match data from 

yeast to mammals and was adapted to study cell cycle arrest in humans. Villaamil et al. (2011) 

identified networks related to the TP53 pathway in renal cell carcinoma using the STRING 

database and MeV bioinformatics tool. They modelled protein interaction and further validated 

the results with immunohistochemistry protein expression profile, and the results indicated two 

protein networks: one involved in angiogenesis pathway and the other indicates a negative 

association between TP53 and glucose transporter type 4 (Glu4). However, the method was 

developed for a particular cancer type, which limits its generalization to other cancers. 

Although the results of this study were interesting, further validation using larger sample sizes 

and different sources could add value, as it only based on a sample of 80 patients from a 

single data source.  

1.7.2. Mathematical models  

Mathematical models provide logical representations of biological systems, allowing scientists 

to test hypotheses, make predictions, and gain new insights into biological processes 
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(Gatenby, 2012). Several mathematical models have been implemented to explore the TP53 

pathway, which provides a better understanding of the functional and dynamic properties of 

the TP53 gene and its impacts. The first set of models was focused on the negative feedback 

loop between the TP53 and the MDM2 genes. Lev Bar-Or et al. (2000) developed a kinetic 

model based on the Ordinary Differential Equation model (ODE) to model the cellular 

concentration of the TP53 and the MDM2 genes. ODE has been used to study the rate of 

change of certain proteins within the TP53 network with respect to time, and it can predict how 

the TP53 dynamics influence the decision of cell survival and death. The partial differential 

equation has been used to understand special patterns of the TP53 gene (Kim et al., 2019). 

Consequently, other proteins, including ATM/WIP1 and P21 were also investigated using ODE 

models.  

Sun et al. (2011) constructed a mathematical model to detect and characterize basal TP53 

pulses under stressed and unstressed conditions, thereby indicating the tolerant and sensitive 

nature of the TP53 system. However, not all interactions were considered in this mathematical 

model, and it was integrated with experimental studies to control the dynamic behaviour of the 

TP53 during stress conditions. Purvis et al. (2012) used computational model to show the 

possibility of controlling cellular fate by adding a timed drug that alters TP53 pulses, leading 

to the expression of different sets of downstream elements. The study identified protein 

dynamics as an essential influencer of cellular fate. Cells with pulsing TP53 dynamics 

recovered from DNA damage, while those with sustained TP53 levels underwent senescence.  

Purvis et al. (2012) also proposed a treatment strategy based on the induction of MDM2 

inhibition to alter the TP53 dynamics from pulsed to a sustained level. Tian et al. (2017) used 

a dynamic network to unravel tumour-suppressive mechanisms in response to mitogenic and 

oncogenic signals, and the network described cell fate decisions with a focus on ARF as a 

major outcome of oncogenic signalling. Moreover, other mathematical models have been 

developed to investigate the TP53 system in metabolism. A computational model was built to 

assess the cell fat decision by comparing signalling and regulatory network in autophagy and 

apoptosis, and the model predicted TP53 as a regulator of cell fate transition from autophagy 

and apoptosis (Liu et al., 2017).  

1.8. Challenges in pathway analysis  

Draghici et al. (2019) undertook a comparative review of 13 widely used pathway analysis 

approaches. Although methods that consider the description of the pathways perform better 



 

25 

than those based on a list of differentially expressed genes, the results indicate that no method 

has superior performance to others. In fact, most pathway databases and software analysis 

tools use curated pathways from the literature to turn gene expression lists into functional 

categories, which represents a major drawback. This is because the databases are 

incomplete, and most of them use manual curators to review existing knowledge from 

literature, which causes delays in the curation process.  

Also, some of the approaches were built on linear statistical models, but in the field of cancer 

research, molecular biology data are usually non-linear and contain noise that needs careful 

consideration upon analysis. Moreover, existing approaches use electronic annotation without 

a system for error detection, which leads to the generation of inaccurate information (Khatri & 

Drăghici, 2005). It is, therefore, imperative to devise and use methods that can cope with these 

challenges. ANN tools can cope with noise and high dimensionality associated with molecular 

biology data and have a system for error detection and continuous adjustment of the results, 

thereby generating more accurate information.  

1.9. Project aims 

As described in section 1.6, the TP53 pathway has been known for its crucial role in cancer; 

it activates regulators that suppress the tumours via different cellular responses. Also, the 

TP53 mutations are present in about half of all tumours. In the remaining half, the entire 

pathway is disrupted due to dysregulation in other pathway components (Huang, 2021). The 

knowledge about these components and the interaction between them has been characterized 

and computerized in the database. However, this knowledge is based on the existing 

experimental findings in the literature, which means some information could be lacking. For 

this, we investigated the whole TP53 network to identify new drivers that could be added to 

the pathway. This aim will be achieved by exploring existing and new features of the TP53 

pathway in cancer. The project also provides evidence for the possibility of using ANN 

approaches as data mining tools to achieve pathway-level analysis of gene expression data.  

1.11. Organisation of the thesis 

The project examine the possibility of using ANN as a pathway data mining tool. First by 

considering single cancer type. Second by considering multiple cancer types and third by 

performing similar analysis using existing pathway analysis tool.  

The analysis carried out in three major stages: 
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1. ANN algorithms to model the TP53 pathway in multiple microarray datasets 

(considering colorectal cancer as a case study).  

2. ANN approaches to perform a comparative analysis of the TP53 pathway based on 

the mutation status of the TP53 gene (Mutant- versus Wild-type), using RNA 

sequencing data from three TCGA projects (colorectal, gastric, and pancreatic 

cancers).  

3. Performing comparative analysis using an existing tool for pathway analysis.  

1.10. Major work contributions 

 Identification of concordant genes associated with known TP53 pathway in 

colorectal cancer.  

 Characterization and discovery of the key interactions and hub drivers linked to the 

pathway members. By modelling each member in the pathway using artificial neural 

network algorithms. 

 Identification of distinctive and common predictors associated with the TP53 

pathway based on the mutation status of the TP53 gene in three cancer types 

(Colorectal, Pancreatic and gastric cancers). 

 Identification of unique interactions and hub drivers associated with the TP53 

pathway in missense and wild type mutation status of the TP53 gene. 
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CHAPTER 2 

NETWORK BIOLOGY METHODOLOGIES  

2.1. Introduction  

This chapter discusses neural network approaches, which are a form of supervised machine 

learning described in section 1.3.2. The supervised approach is trained to detect predictive 

patterns from highly complex and noisy data in biological systems. They have been discussed 

here separately since they were used for the analysis that was carried out in this research. 

The first part explains the general biology and the principle of the network models. The second 

part focused on the Artificial Neural network as it is the core methodology used in the project. 

This includes a description of the theory behind the method, the history, and the structure of 

the methods. It also contains a section that explains the advantages and drawbacks of the 

method. The third part describes how the method was adjusted to fit the research purposes.  

2.2. Network biology  

Network biology is a research area that recognizes biological processes as a complex set of 

molecular interactions. Biological networks provide a theoretical framework to model and 

investigate complex interactions of various entities in biological systems, offering valuable 

ways to understand and visualize the interactions and functions of cellular components. An 

ideal network model is a graphical representation of biological components, such as genes 

and proteins, and their interactions in a biological system. This facilitates pattern recognition 

and knowledge extraction from complex data (Zhang et al., 2014). It also helps predict new 

components' functions, which aids drug discovery. Biological network graphs usually contain 

a set of nodes that represent biological entities and a set of edges that represent interactions.  

Biological networks include protein-protein interaction (PPI), gene regulatory (GRN), and 

metabolic networks. In PPI networks, proteins are represented in nodes, and the interactions 

between connected proteins are represented as edges. GRN represents regulation 

mechanisms of gene expression, in which a node presents a gene, and an edge represents a 

direct link between two genes, which means that the expression of one gene is directly 

regulated by the other (without mediation). By contrast, the metabolic network represents 

chemical interactions using a graph whereby each metabolite is mapped to a node, and each 

reaction is linked to a direct edge labelled with an enzyme (Muzio et al., 2021).  
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2.3. Principles behind network models  

Cellular molecules are joined together to form complex networks. The majority of such 

molecules are identified through high-throughput technologies. The challenge has arisen of 

optimally assembling such components systematically into cellular networks to answer crucial 

biological questions about the cellular processes that govern disease initiation and 

progression. For instance, a pertinent question pertaining to cellular networks is how genetic 

abnormalities disrupt the regulatory system and contribute to cancer development. The large-

scale assembly of biological components could be achieved using data-driven computational 

models, which can infer biological networks and provide a global understanding of the 

underlying mechanisms. Pe’er and Hacohen (2011) identified three principles for inferring 

molecular networks from data:  

1. Statistical correlation network inference can be used to infer interactions between 

biological entities and to determine the potential influence each entity may have on 

another one. This uses computer power to analyse millions of hypotheses in a matter 

of seconds and develop a statistical score for each candidate interaction. Bayesian 

networks, as described by Friedman et al. (2002), are an example of network inference 

applying a statistical framework. Also, module network developed by Segal et al. 

(2003) is based on grouping the genes into modules, and assuming that genes that 

belong to the same module share a regulatory programme.  

2. The second principle assumes that networks are not fixed but rather respond to 

different internal and external signals. Irish et al. (2004) showed the influence of growth 

factors and cytokines by identifying unique cancer network profiles that correlate with 

genetics and disease outcomes.  

3. Differential network strategies can detect key components that alter the network 

functionality and model their interaction with another component in the system.  

2.4. Artificial neural network  

2.4.1. General overview  

ANNs were defined by Jain et al. (1996) as "massively parallel computing systems consisting 

of an extremely large number of simple processors with many interconnections." They are a 

form of machine learning using algorithms learned from patterns. They can process 

information in a way that mimics the biological brain network. ANNs are suitable for the 
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analysis of non-linear complex interactions and the presentation of "real-world" problems. 

They have the power to handle noisy information, learn from errors, and interpret previously 

unseen data. These characteristics make them germane to the analysis of genomic data to 

gain information about complex biological systems (Lancashire et al., 2005).  

2.4.2. Historical background  

ANNs were first described as a simple mathematical neuron model inspired by the basic 

functions of biological neurons, the building blocks of the brain (McCulloch & Pitts, 1943). 

There are billions of neurons with different types and lengths related to their location in the 

body. A simple neuron consists of three major functioning units: the dendrites (which receive 

signals from other neurons); the cell body (which contains the nucleus and the cytoplasm); 

and the axon (which carries the signal to the adjacent neurons through the synaptic gap) 

(Basheer & Hajmeer, 2000). Rosenblatt (1958) introduced the concept of the perceptron as 

a single-layer neural network with adjustable synaptic weights and external bias designed for 

the classification of data where patterns are extracted only from two linearly separated 

classes. In other words, the perceptron function properly only if there are two classes of data, 

and that represents a major limitation of the model.  

Rosenblatt (1958) developed a learning procedure based on the “perceptron convergence 

theorem”, which proved that perceptron learning could converge after a finite number of 

iterations, positioning the decision surface in the form of a hyperplane between two classes. 

The perceptron receives inputs (X1, X2, Xm), and links them to the synaptic weights (denoted 

by W1, W2, Wm), and an external bias denoted by b; consequently, the net inputs are given 

by:  

 XJ=∑𝑚�𝑖�=1�𝑤�𝑖�𝑥�𝑖��+�𝑏�  (Equation 2.1)  

The perceptron is activated only if the net inputs are greater than the bias. It produces an 

output class equal to +1 when the net input is positive and a -1 output class when the net input 

is negative.  

Subsequently, the least-mean-square (LMS) algorithm was developed by Widrow and Hoff 

(1960), inspired by the perceptron theorem, following linear laws in the contained linear 

neurons and adjustable weights. The distinctive feature of this model is that it is the first 

adaptive filtering algorithm that uses the steepest descent method as a form of optimization. 

The method estimates the results by applying an adaptive filter, in which the algorithm starts 
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by assigning random weights and then adjusts continuously in response to statistical variations 

in the behaviour of the investigated network. (Haykin, 2009).  

2.4.3. Structure of multilayer perceptron  

The multilayer perceptron (MLP) model is the most common form of neural network structure. 

It processes information in three or more layers, using a nonlinear activation function; thus, it 

overcomes the limitation of the previously described linear models. The first layer is the input 

layer, where the input data are scaled between 0 and 1 and linked to a set of randomised 

weights between 0 and 1. The inputs are then propagated forward to one or more hidden 

layers, and a statistical calculation is performed in each neuron by taking the sum of the 

values multiplied by the weight value to generate the “neuron activation”. An activation function 

is performed to the sum to produce an output of the network in the output layer. Different 

activation functions are used for weight calculation and adjustment of neuron hidden layers. 

The most widely used one is sigmoidal activation function, which can map the activation of a 

neuron and produce a continuous output in a range between 0 and 1. The number of hidden 

layers is based on the complexity of the data (Lancashire et al., 2009). Figure 2.1 represents 

the structure of the multilayer perceptron.  
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Figure 2.1: Graphic representation of the multilayer perceptron with sigmoidal activation 

function and backpropagation algorithm to adjust the weights 

ANN with input layer, one hidden layer, and output layer 

Source: adapted from Lancashire et al. (2008) 

2.4.4. Learning rules  

Learning is a mathematical logic that improves the performance of ANNs, enhancing their 

ability to perform specific tasks. Learning can be achieved through updating the internal 

representation of the network, which entails modification of the network structure and 

adjustment of the attached weights. The process of learning occurs iteratively by presenting 

training examples to the network. The final goal of learning is to identify the optimal set of 

weights that provides a learned network, which has the smallest number of errors and thus 

improved accuracy and capacity to define solutions closest to the expected ones. A learned 

network is defined by two features: (1) its ability to handle noisy, imprecise, and fuzzy 

information without adverse effects on response quality; and (2) its ability to generalize from 

the learned task to a previously unseen one.  

Learning usually follows specific rules that define how the weights link the network neurons 

(the input to a neuron or two neurons together). The learning involves iterative adjustment of 

the weights and is controlled by a constant name, the learning rate. A large learning rate leads 

  
Input layer   Hidden layer   Output layer   
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to a fast-learning process; if the learning rate is too small, the learning will be slower 

(Lancashire et al., 2009). There are four main types of learning rules used for ANN learning 

(Basheer & Hajmeer, 2000; Jain et al., 1996):  

2.4.4.1. Hebbian learning rule  

One of the earliest and simplest learning rules in the artificial neural network field. It is 

introduced in 1949 by Donal Hebb and it is often used for unsupervised learning tasks. In this 

rule, the weight is adjusted locally based on the activities of the neurons. It assumed that if 

two neighbour neurons are activated synchronously and repeatedly, then the weight between 

them is selectively increased. Based on Hebbian learning rule, the weight increased based on 

the following formula at every time step: 

 Wji (t) = αxi (t). Yj (t) 

Wji (t) = the rate at which the connection’s weight grows at time step t. 

α = constant learning rate. 

xi (t) = the pre-synaptic neuron’s input value at time step t. 

Yj (t) = the output of pre-synaptic neuron at same time step t. 

2.4.4.2. Error-correction learning (ECL)  

This is widely used in supervised learning for tasks such as classification or regression, 

estimating error (the difference between the predicted and actual outputs) occurrence in each 

training cycle, and using the correct output to adjust the connected weights, thereby leading 

to a gradual reduction in the overall network errors. At the beginning, the network received 

input data and intended output (target). The output of the network is then compared to the 

desired one, and the discrepancy (error) between the two is computed. After that, the network 

modifies its weights in a way that reduces this error, to get closer to the correct output for a 

particular input. Mathematically, the gradient of the error with respect to the weights, or error 

signal is proportional to the change in weights: Δw = -η * ∂E/∂w, where η is a learning rate. 

2.4.4.3. Boltzmann learning (BL)  

Boltzmann learning, also known as energy-based learning or Boltzmann machines. A form of 

unsupervised machine learning used for various tasks including feature learning, pattern 

recognition and data compression. Boltzmann machines are defined by an energy function, 
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which gives an energy value for every possible network configuration. The weights of the 

connections between the units and their states determine the energy of a configuration. The 

Boltzmann distribution relates the energy of a configuration to its probability. The goal of 

Boltzmann learning is to reduce the discrepancy between the model distribution that the 

Boltzmann machine represents and the distribution of the observed data. The learning 

includes adjustment of the connection weights  

2.4.4.4. Competitive learning (CL)  

A form of unsupervised learning suitable for tasks like clustering. In CL rule, the output neurons 

are compete among themselves for activation, and only one neuron is activated at any given 

time. Each neuron in the network represents a category or a cluster in competitive learning, 

where neurons compete to react to patterns in the input. The neuron (unit) whose weights are 

most similar to the input become active when the network receives an input pattern; other 

neurons remain inactive. The active neuron known as the winner, and its weights are adjusted 

to become more similar to the input pattern, to strengthen its capacity to respond to similar 

inputs in the future.  

2.4.5. Backpropagation networks (BP)  

As explained previously, ANN can detect and learn from errors by adjusting the connected 

weights. The learning occurs by using training cases to identify the best set of weights, which 

leads to a trained ANN model able to predict outputs closest to the expected values. For this 

purpose, the backpropagation algorithm is used, as first developed by Williams and Hinton 

(1986). In this method, the training of the network occurs in two phases: (1) the forward phase, 

in which the synaptic weights are attached to the inputs and propagate forward signals across 

the different layers of the network; and (2) the backward phase, in which an error is calculated 

by comparing the predicted output to the true output in respect to the connected weights, and 

the difference between the two values represent the error.  

The algorithm aims to determine and minimize the error in each training cycle through the 

learning process. This is achieved by generating a backward signal across the different layers 

of the network to update the weights iteratively until no improvement in the error is observed, 

or a target error is reached. The error is determined as the total sum of squares based on the 

difference between the predicted output and the desired output, represented in the following 

equation:  

 E�   (Equation 2.2)  
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Where n is the number of cases, dj is the desired network output for the case j, and yj is the 

predicted network output for the case j. This learning process is commonly known as back- 

propagation (Lancashire et al., 2009). The error decreases from one training cycle (or epoch) 

to the next one based on the following equation:  

 ∆(𝑡�)�=�ηδk�xi  (Equation 2.3)  

Where ∆𝑤�𝑘�𝑖� represents the weight change at the current training cycle (nth), δk�represents 

the error in the output unit, Xj represents the weight associated with the input value, and η�is�

a learning rate constant (which controls the size of weight change).  

2.4.6. Generalization and Overfitting of ANN  

The term generalization refers to the ability of the neural network to learn from patterns 

presented in the training data and to use these patterns for predicting good outputs of 

previously unseen cases. This occurs by using an algorithm that learns from a pattern and 

builds a statistical model that is able to generalize for future data (Haykin, 2009). For instance, 

using the amino acid sequences to predict the three-dimesional structure of proteins. Since 

protein structures can differ greatly even amongst proteins with similar sequences, 

generalization is crucial. Accurate predictions are necessary to comprehend protein function 

and develop treatments. The opposite of generalization is overfitting, which represents a 

major risk during the training of the neural network. Overfitting occurs when the network tries 

to memorize noise or unnecessary features from the training data, subsequently leading to 

poor generalization for similar unseen data. For example, prediction of gene expression levels 

in response to a variety of factors including different experimental settings, if the model picks 

up batch effects or noise in the training data, overfitting may result. To address the problem of 

overfitting, regularization techniques need to be applied during the training process (Libbrecht 

and Noble, 2015).  

There are several regularization methods that can be chosen based on the data type or the 

required regularization performance. The most common one is resampling approach, where 

that data is split into three subsets: a training set used for training and optimization of the 

network, a test set for monitoring errors occurring during the training, and a validation set for 

independent validation of the trained model to produce an unbiased estimation of the network 

prediction performance for future cases. The training weights with the lowest error for the test 

subset are used for the final network model. The process of random splicing of the data into 

three subsets with a predetermined number of cases in each subset is known as Monte Carlo 
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Cross Validation (MCCV), which involves random shifting of the data between the various 

subset to enable confidence in prediction and reducing the risk of overfitting (Shao, 1993).  

In the early stopping regularization method, the network produces signals to stop training when 

a predetermined set of iterations (epochs) have been completed or when the error for the 

validation or the test subset exceeds a certain minimum threshold. This reflects a reduction in 

the network performance, which is a signal of overfitting. Another simple regularization 

technique to address overfitting is weight decay. In this method, a penalty term is added to the 

error function. An example of this is to multiply the sum of the squared weights and biases by 

a decay constant that regulates how much the penalty should affect the resulting error. This 

method aims to keep weight value smaller by removing large weights (which are normally 

associated with over-fitted models) (Lancashire et al., 2009).  

2.4.7. Optimization and selection of ANN parameters  

ANN parameters require careful selection for practical applications to separate the signal from 

noise and to avoid signal overfitting. These include the number of hidden layers, the learning 

rate, and the addition of a momentum factor (used to accelerate the training process and 

prevent the network from being stuck in the flat region in error space or being trapped in a 

local minimum). A Momentum can be applied by a slight alteration to the rule of the weight 

update in the backpropagation algorithm by making the weight update in the current training 

cycle (tth) depend on the update of the previous cycle (t-1th). The momentum can be 

represented as follows:  

 ∆𝑤�𝑗�𝑖� (𝑛�) =𝜂�𝛿�𝑘� 𝑥�𝑖� + 𝛼�∆𝑤�𝑗�𝑖� (𝑛� − 1)  (Equation 2.4)  

Where 𝑥�𝑖� is the input value, 𝛼� is the momentum constant, 𝜂� is the learning rate, ∆𝑤� is the 

weight difference, and 𝛿�𝑘� the error in the output unit. The momentum constant could be 

between 0 ≤ α ≤ 1. The selection of the momentum value depends on the data and the problem 

under investigation. Thus, several experimental trials with a range of values are needed to 

identify the optimal value in a certain practical situation. For the microarray data analysis, a 

momentum of 0.5 with a learning rate of 0.1 has proven to be successful (Lancashire et al., 

2005), (Lancashire et al., 2008).  

The hidden layer contains hidden neurons which are required to process the weight sum 

based on the activation function in a forward direction. They are also needed for error 

propagation in a backward direction and for the update of the weights in the input layer 

(Haykin, 2009). The selection of the optimum size of the hidden layers is critical, as it affects 
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network performance. Containing too many nodes leads to overfitting and poor generalization 

for unseen cases, while too few nodes lead to poor network performance by mistaking the 

non-linear inputs (Mitchell, 1997).  

The common way to determine the size of hidden nodes in BP networks is through trial and 

error. Constructive methods can be used for this, whereby the network starts with a small 

number of nodes in the hidden layer, and new nodes are added one by one in the training face 

when needed. The advantage of the constructive algorithm is that the initial phase can simply 

set the number of hidden layers and neurons as one each. However, deciding when to add 

hidden neurons or connections and when to stop the addition process is difficult. Growing self-

Organizing Maps (GSOM) can be considered as example of network that uses constructive 

method. In this approach, the network structure grow dynamically during training to adapt to 

the input data distribution. GSOM expands on Self Organizing Maps to enable the network to 

express intricate relationships in the data, new neurons are added to areas with high data 

densities. GSOM can be used for analysis of Omics data for clustering and visualization of 

gene expression profiles (Rauber and Dittenbach, 2002). Pruning methods start with 

oversized networks and subsequently iteratively eliminate irrelevant nodes during the training 

process (Liu et al., 2019). Feature selection-based approaches can be used to prune neural 

networks, by eliminating irrelevant features from the data. Pruning strategies based on feature 

selection can improve neural network performance in omics data analysis tasks by 

concentrating on the most important features, such as gene expression levels (Guyon and 

Elisseeff, 2003).  

A network with one hidden layer and two hidden nodes can give the required optimal predictive 

performance for the microarray data analysis (Lancashire et al., 2009). In this project, a model 

with one input layer, one hidden layer with two nodes, and one output layer was used for data 

analysis.  

2.4.8. ANN advantages and disadvantages  

The table below provides a structured breakdown of the advantages and limitations of Artificial 

Neural Networks (ANNs) 
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Table 2.1: Advantages and limitations of ANNs in machine learning 

ANN advantages and disadvantages 

Advantages Disadvantages 

Provide robust solutions for complex non-

linear problems 

Suitable for the analysis of genomic data. 

Tolerate noise and handle missing and 

incomplete information. 

Ability to generalize by correctly classifying 

previously unseen data based on the training 

cases (Manning et al., 2014). 

Overfitting: Network may memorize noisy 

data in the training set, leading to poor 

generalization. 

Time-consuming modeling of complex data: 

High dimensionality and complexity require 

more hidden layers, leading to longer 

training times. 

Inability of the algorithm to cover the global 

minimum: Addressed by randomizing initial 

weights before each training cycle (Manning 

et al., 2014). 

Lack of transparency ("black boxes"): 

Difficulty in understanding how certain 

outputs are reached based on inputs 

(Lancashire et al., 2008).  

Impact of data quality: Performance affected 

by high background variation and challenges 

of reproducibility associated with some 

technologies. Preprocessing helps mitigate 

these issues (Lancashire et al., 2009). 

 

2.5. Stepwise ANN  

ANNs have been demonstrated previously as powerful tools for data mining and pattern 

recognition (Bishop, 1995). However, the application of ANNs in biomedical research still 

needs to be improved. One of the main limitations is the ability of ANNs to cope with the high 

dimensionality associated with genomic data. This is known as the “curse of dimensionality,” 
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first described by Bellman (1961) as “the exponential growth of the input space as a function 

of dimensionality.” For the purposes of this research, this pertains to the significant feature of 

a particular gene potentially being hidden among the vast number of other vectors in the data 

matrix. It occurs when the number of variables (genes) is higher than the number of cases 

(patients), which adds noise in the data space, leading to poor performance for unseen data. 

To overcome this issue, pre-processing and data dimensionality reduction methods have been 

widely applied (Bishop, 1995). However, feature extraction and generalization of such data 

remain challenging.  

Stepwise ANN was developed in-house and was published by Professor Graham Ball and his 

team at Nottingham Trent University (Lancashire et al., 2005). It is capable of identifying 

patterns within the data in an iterative manner by finding the best single variables that perform 

the highest performance to classify the data regarding the question studied. This enables the 

building of the network by adding the following variables iteratively to improve classification 

performance and extract more reliable and meaningful information from complex data. For this 

project, Stepwise ANN approach was used for the identification of a panel of genes with the 

best predictive performance for a certain question by data mining the whole transcriptome. It 

is constructed to seek a model with the lowest predictive error by adjusting the network weights 

and adding the variables in an iterative manner. Moreover, ANNs have been successfully used 

for biomarker discovery in breast cancer (Abdel-Fatah et al., 2016). The study was done to 

determine variables that drive proliferation and the characteristics that go along with it in breast 

cancer, and to evaluate which variables related to clinical outcomes and response to therapy. 

ANN integrated data mining tools also used for biomarker discovery for Alzheimer disease 

(Dimitrios et al., 2018). In this study, ANN algorithms used to explore the difference in gene 

expression profiles between Alzheimer and healthy brains. Stepwise ANNs used for analysis 

of public data for to predict interaction between genes. Moreover, ANN`s integration 

approaches have been applied to genetic and MRI data to create a multimodality prediction 

system for personalised neoadjuvant breast cancer treatment (Abdel-Fatah et al., 2022).  

The ANN architecture contains a single input layer, a single hidden layer with two hidden nodes 

with sigmoidal transfer function, to incorporate nonlinear function into the model whilst 

avoiding overfitting. Moreover, the network utilizes a feedforward backpropagation algorithm 

for updating the weights, and a root mean squared error value (RMS) for estimation of the 

prediction error. Initially, each gene from the transcriptomic data was considered as an 

individual input in the ANN, thus creating “n” individual models (where “n” refers to the number 

of genes studied in the experiment). All models are then sorted based on their RMS error for 
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the unseen cases. The learning weights combined with the inputs are updated in the next 

training cycle based on the best-performing input at the previous step. Thus, the best 

performing input is removed for each consequent step, and the remaining n-1 inputs are used 

for analysis. This stepwise iterative process is implemented to achieve the most optimal 

predictive performance model, or until no further improvement in the model performance is 

observed (Lancashire et al., 2008).  

For better model generalization and to improve the predictive performance, an MCCV strategy 

was applied. The samples were randomly divided into a training subset (for model learning), 

a test subset (to evaluate the performance of the model during the training), and a validation 

subset (for independent model testing for unseen cases), at a ratio of 60:20:20 (respectively). 

It has been found that 50 iterations are optimal to provide the most consistent model (with no 

further improvement observed using more bootstraps) (Lemetre, 2010). During this project, 

the setting of Stepwise ANN parameters was maintained, as shown below.  

 Stepwise ANN parameters  

 3000 for the maximum number of epochs  

 1000 epochs window time  

o learning rate  

 0.5 momentum  

 Weights initially randomized between -1 and +1  

 Algorithm run for 20 independent loops for each single gene.  

 Results were sorted based on the minimum average square error MSE for the test 

subset across the 20 loops.  

2.6. Interaction algorithm  

This algorithm performs an iterative calculation of the influence that multiple genes might have 

on a single gene. The difference between this algorithm and the Stepwise ANN is that instead 

of identifying genes with the best predictive performance, it predicts the influence each input 

gene has on the expression of a single output gene. It tests whether a given input gene can 

explain the expression variation of a certain targeted gene. In the beginning, one gene is 

selected as an output, and all the remaining genes are used as inputs, to explain the level of 

expression of the first gene by assigning a weighted score that is directly proportional to the 

intensity of each pair of genes. The process is then repeated iteratively for all genes in the 
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expression matrix. Then the results are generated as a large matrix containing the interaction 

values across ten iterations.  

The algorithm links each input to the output and determines the directionality of the interaction 

between a particular input (source) and an output (target) based on the sum of the weights in 

a pair-wise manner. The algorithm is known as an ANN-based inference algorithm. The 

structure of this algorithm previously described by Lemetre et al. (2009) contained a 

threelayered MLP, with one hidden layer of two nodes, one output layer, a sigmoidal transfer 

function used for calculation of the output, and a backpropagation algorithm to update the 

weights. An MCCV strategy was used prior to the training of the network in a percentage of 

60:20:20 for training, test, and validation subsets. The process was repeated after re-sampling 

the cases (50 times). During these cycles of repeats, a correlation analysis was performed to 

compare the expected output values with the predicted values for all cases of the test subset. 

This is done by calculation of the Pearson correlation coefficient (r), which provides a level of 

confidence for each of the 50 repeats to predict the output. A threshold of r > 0.7 for 10 

bootstraps was used to filter the most significant interactions (Lemetre et al., 2009). Used the 

same parameters in Stepwise analysis except for the epoch and the window timing, which 

decreased to 300 and 100, respectively. In this project, The ANNI and the Stepwise ANN have 

been utilized in combination. At the beginning, the Stepwise ANN was used to determine the 

genes with high predictive performance and lowest MSE for each of the investigated 

questions, this stage was done manually for the first set of experiments, and then the method 

was automated to reduce the analysis timing. The genes with the highest ranking among all 

investigated questions were selected to be used with ANNI. There is no ideal number of 

variables to choose from, but the number should increase in proportion to the question's 

complexity. For this project, 200 genes that were concordant between all questions were 

chosen for the interaction analysis. Figure 2.2 presents a schematic overview of the ANN-

based data mining approaches used for analysis in this study and  

Figure 2.3 presents a schematic overview of interaction algorithm used in the project  
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Figure 2.2: Schematic overview of ANN-based data mining approaches used for analysis 
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Figure 2.3: Schematic representation of interaction algorithm used in this project  
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CHAPTER 3 

ANN MODELLING OF TP53 PATHWAY IN COLORECTAL CANCER  

3.1.  Introduction  

The previous chapter provides a detailed description about the Artificial Neural Network as a 

main approach used for the analysis carried out in this project. This chapter describes the 

utility of ANN-based data mining approaches for modelling the TP53 pathway in CRC. It 

provides a comparison between five colorectal datasets and a control dataset obtained from 

normal colon. The data was acquired as a metadata set from ArrayExpress database.  

The first part provides a general overview of the disease, including its formation and 

progression. It also includes the molecular characteristic of CRC, the diagnosis and 

management of the disease. It also reviews the TP53 pathway in CRC. The second part 

concerns the study's purposes and objectives. The third is about the approaches used in the 

analysis. The fourth is about the essential findings and discussion. And the final part provides 

a summary and conclusion of the study.  

3.2. Colorectal cancer (CRC)  

Colorectal cancer (CRC) is the third most frequent cancer and the fourth leading cause of 

cancer death worldwide (Torre et al., 2016). CRC begins as an abnormal proliferation of colon 

epithelial tissue, known as polyps, most of which are initiated from granular cells, known as 

adenomas. About 10% of all adenomas are continually growing and eventually transforming 

into invasive adenocarcinoma. The extent of invasion of the colon wall determines the stage 

and prognosis of the cancer disease. Some cells metastasize to other organs via blood or 

lymphatic vessels (Rawal et al., 2019). There are multiple risk factors associated with CRC, 

including higher age-related incidence (Edwards et al., 2010), and cigarette smoking 

increases CRC risk. It is associated with poor prognosis (Ordonez et al., 2018).  

Moreover, inflammatory bowel diseases caused mainly by ulcerative colitis (UC) increase 

CRC risk. A meta-analysis study by Jess et al. (2012) reported a 2.4-fold increase in the risk 

of CRC in patients with UC. According to a large retrospective study by Kunzmann et al. 

(2015), dietary fibre intake has been related to colorectal cancer incidence. They reported an 

inverse correlation between dietary fibre intake and the risk of adenoma formation. They 

pointed to cereal and fruit fibre as important nutritional constituents that reduce adenoma 

formation, including advanced adenoma, which is likely to progress to colorectal cancer. 
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However, the study found no association between dietary fibre intake and recurrent adenoma 

per se. It noted the potential role of genetic and lifestyle factors that make detecting 

association’s complex in individuals with recurrent adenomas. Hereditary mutations of specific 

genes facilitate polyp formation and malignant transformation. Two common inherited 

syndromes that increase the risk of CRC are familial adenomatous polyposis (FAP) and 

hereditary non-polyposis colorectal cancer (HNPCC). FAP patients develop multiple 

adenomatous polyps. Some of which eventually progress to invasive colorectal carcinoma. 

Mutations in the adenomatous polyposis coli (APC) gene have long been identified as a 

possible cause of FAP (Groden et al., 1991; Nishisho et al., 1991). This gene functions as the 

"housekeeper" for cellular proliferation in colon tissue, regulating oncoprotein β-catenin. 

Moreover, the detection of APC mutational status is helpful for the identification of individuals 

at risk of developing CRC (Tsang et al., 2014). By contrast, most HNPCC occurs due to a 

hereditary mutation in mismatch repair genes (MMR) such as hMSH2, hMLH1, and hPMS2 

(Kinzler & Vogelstein, 1996).  

3.2.1. Molecular characteristics of Colorectal Cancer  

CRC is a heterogeneous disease; several disease subtypes can be identified based on clinical 

and molecular features. Multiple genetic mutations are accumulated due to loss of genome 

integrity during tumour formation. Chromosomal instability (CIN), CpG island methylator 

phenotype (CIMP), and microsatellite instability (MSI) are common mechanisms involved in 

the multistep process, which develops over decades and involves several genetic events. APC 

mutation, followed by the sequential accumulation of other genetic mutations, including KRAS 

and TP53 mutations, eventually leads to CRC, as shown in Figure 3.1 (Nguyen & Duong, 

2018). There are several molecular pathways involved in the formation of CRC. Disruption in 

the Wnt/β catenin pathway is common in CRC; it promotes cellular proliferation and inhibits 

differentiation. Dysfunction of the PI3K/AKT pathway is also found in CRC, and involves 

multiple cellular processes, including cell cycle and apoptosis. The aberrant RAS/ Raf pathway 

is also present in CRC, activating a series of kinase proteins responsible for transducing 

external signals through the plasma membrane into the nucleus (De Rosa et al., 2015).  
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Figure 3.1: Multistep genetic model of CRC carcinogenesis 

APC mutation occurs at the early adenoma stage followed by KRAS, BRAF mutations at the 

intermediate adenoma, then CDC4, SMAD4, LOH18Q at the late adenoma stage, and finally  

TP53, BAX, TGFBR2, IGF2R at the cancer stage. There are three main routes involving 

CIN, MSI, CIMP  

Source: Adapted from Nguyen and Duong (2018). Nguyen and Duong (2018) 

3.2.2. TP53 pathway in CRC  

Early evidence suggested an association between the TP53 mutation and colorectal cancer. 

The study pointed to the TP53 mutation and the allelic loss of chromosome 17 as potential 

causes for the loss of tumour suppression function of the Wild-type TP53 in CRC (Baker et 

al., 1989). A consecutive study in Colorectal Cancer by the same group proposed the TP53 

mutation as a late event that occurs during the transition from Late adenoma to carcinoma 

(Fearon & Vogelstein, 1990). Years later, the TP53 pathway was found to be among the most 

significantly altered signalling pathways in colorectal cancer tissue (compared to the normal 

subtype). Overexpression of the TP53 protein has been reported in 56% of colorectal cancer 

patients; furthermore, it has been associated with poor prognosis and reduced survival rate 
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(Rambau et al., 2008). A comparative study identified Mutant TP53 among the concordant 

genes between primary and metastatic CRC and highlighted the importance of the Mutant 

TP53 in tumour initiation, as well as in the progression and metastasis of CRC (Brannon et 

al., 2014).  

Moreover, the TP53 gene has been found to be among the top-6 differentially expressed genes 

in grade (II and III) colon cancer, using the system biology approach. Rostami-Nejad (2019) 

identified a functional correlation between TP53 and other genes, including MAPK3 AKT1, and 

pointed out that the AKT1 gene has a negative regulation on TP53 and MAPK3 genes (i.e., 

overexpression of AKT1 reduces the activity of these genes). However, the results were based 

on one dataset, with a relatively small number of patients, emphasizing the need for more 

confirmation in a large-scale setting. This is one of the issues which was considered in this 

project.  

Moreover, Slattery et al. (2019) used a statistical method based on differential expression 

analysis and fold change values to explore the interaction of targets from the TP53 signalling 

pathway in CRC compared to normal mucosa. The study supported previous reports of the 

influence of activated TP53 on downstream targets, and suggested that this influence may be 

executed via mRNA:miRNA interactions. Other genes within the TP53 pathway could also be 

implicated in CRC formation. Ribonucleotide reductase M2 (RRM2), a TP53 target involved in 

the DNA repair mechanism, has been reported as a facilitating factor for the invasion and 

metastasis of CRC (Lu et al., 2012). Gali-Muhtasib et al. (2008) identified a worse prognosis 

and increased level of Checkpoint kinase 1 (CHEK1) in advanced stages of CRC and 

suggested that the addition of CHEK1 inhibitors could be a promising therapeutic strategy for 

CRC.  

3.2.3. Diagnosis and management of CRC  

The standard method for diagnosis of CRC is colonoscopy followed by a histopathology 

examination. This method is helpful in tumour localization and polyp removal, and the 

technique is precise and sensitive. However, in some cases, there are difficulties regarding 

the preparation method and patient tolerance. Computed tomography-colonography (CT or 

CTC) is used as an alternative method to colonoscopy in CRC diagnosis (De Rosa et al., 

2015). Moreover, the TNM tumour staging system is the most important way to the evaluation 

of CRC. It involves the determination of tumour invasion depth (T), Lymph node involvement 

(LN), and distal metastasis (M). The system is used for staging and classification of CRC into 

four main stages:  
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 Stage I and stage II – localized tumour.  

 Stage III – regional spread  

 Stage IV – distal spread tumour.  

The main aim of the TNM staging system is to determine the severity of the disease and to 

guide therapy choices (Greene et al., 2008). It is also used as a prediction system for 

prognosis, although it has some reliability issues, especially for identifying high-risk stage II 

patients. Moreover, faecal occult blood tests are used for early detection of CRC in many 

screening programs due to their ease and low cost, but related evaluations are considered to 

be subjective, as various factors lead to low sensitivity rates (Alves et al., 2019).  

Many therapeutic strategies are used for the management of CRC, which is mainly based on 

the disease stage. Complete mesocolic excision is the standard surgical procedure for 

managing primary CRC. In an emergency, segmental colectomy will be a better choice (De 

Rosa et al., 2015). Adjuvant chemotherapy is used for stage II and III CRC, and radiotherapy 

is used for rectal cancers. In the case of the metastatic unresectable lesion, palliative therapies 

to improve life quality and enhance survival could be appropriate choices.  

Advances in microarray and sequencing technologies pave the way toward more personalized 

treatment for CRC and facilitate the discovery of prognostic and predictive biomarkers. Some 

of them entered the clinical practice and added value to the diagnosis and management of 

CRC. For example, KRAS is now used in clinical settings as a predictor for negative response 

to epithelial growth factor (EGFR) targeted therapy (Vacante et al., 2018).  

Moreover, statistical and computational tools are assets in biomarker discovery and provide a 

clue about the molecular interactions in CRC. For example, Yong et al. (2018) used differential 

gene expression and the protein-protein network to correlate protein phosphatase two 

catalytic subunit alpha (PPP2CA) expression for the prognosis of CRC. The study identified 

the role of PPP2CA in initiating and developing CRC and its possible utility as a therapeutic 

target for CRC. Peterson et al. (2020) used a mathematical model to predict the incidence and 

timing of mutation responsible for CRC initiation. The authors assumed that the model could 

be used as a primary step in CRC research related to early detection and therapeutic 

discoveries, but it needs to be validated using human data.  

While such studies add great value to the CRC research field, no previous work provides a 

holistic view for understanding the TP53 pathway in CRC and exploring the potential 

interactions between its targets. Also, recent advances in molecular biology technologies 
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generate a vast amount of data that needs to be analysed using robust data mining tools to 

extract meaningful biological information. Indeed, ANN and network inference algorithms have 

been shown previously as valuable prediction tools, whose application can lead to significant 

scientific discoveries. For example, Abdel-Fatah et al. (2016) utilized ANN approaches to 

identify the proliferation drivers most associated with breast cancer, and identified 

spermassociated antigen 5 (SPAG5) to be an independent prognostic marker and a 

therapeutic predictor for breast cancer. The result has been used as a cornerstone for 

consecutive research aimed at investigating the possibility of using this biomarker in the 

clinical practice of breast cancer.  

Following in the vein of such research directions, this study proposes ANN-based algorithms 

as a prediction tool for the identification of hub drivers and modelling the interactions within 

the TP53 pathway in CRC.  

3.3. Objectives  

The objectives of this chapter are to:  

 Collect data using the Array-express database and identify common TP53 members 

using the KEGG pathway database.  

 Determine the top-ranked genes related to each member within the TP53 pathway by 

applying Stepwise ANN algorithm in four independent CRC microarray datasets.  

 Identify the concordant top-200 ranked genes between different members using Excel 

and R programs.  

 Integrate the results and identify the common genes between different members and 

between different datasets.  

 Perform functional and enrichment analysis for the identified genes.  

 Link the identified genes to previous publications using manual literature search to 

identify the novel genes and previously identified ones.  

 Perform network inference to predict the interaction between these common genes 

using ANN based interaction algorithm.  
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3.4. Methods  

3.4.1. Data source  

A total of five datasets were used for this analysis, along with sixth acting as a control, as 

briefly described below:  

1. GSE17536 – contains data from 177 CRC patients from the H. Lee Moffitt Cancer 

Center in the US. It has been used to identify colon cancer patients at risk of recurrence 

and death.  

2. GSE13294 – contains data from 155 patients diagnosed with primary colorectal 

adenocarcinoma at Aarhus University Hospital in Denmark. It was made available for 

public use in 2009.  

3. GSE26682 – contains data from 300 colorectal samples from the UT MD Anderson 

Cancer Center in the US. The samples were processed as two batches using two 

different hybridization techniques. GPL570 platform data were used for consistency 

across all comparisons. The platform contains 175 samples collected at the time of 

surgical resection then the tissues were frozen for RNA isolation and microarray 

analysis.  

4. GSE14333 – contains data from 290 primary colorectal cancers collected in two 

centres: (A) the Royal Melbourne Hospital in Australia (n = 162 samples); and (B) the 

H. Lee Moffitt Cancer Center in the US (n = 128 samples). This dataset was divided 

into two cohorts since the original analysis was carried out in two different centres 

(GSE14333-A for the Royal Melbourne Hospital; and GSE14333-B for the L-Moffitt 

Cancer Centre).  

5. GSE4183 – a control dataset, containing data from 53 normal colon, adenoma and 

inflammatory bowel disease samples. This was included in the analysis as a control 

group.  

All datasets used for this analysis were developed using Illumina Affymetrix Human Genome 

U133 Plus 2.0 Array. The log normalized gene expression matrices were obtained as a 

metadataset consisting of 20,545 transcripts, with a total number of 798 patients. 

ArrayExpress database was used to download the data (https://www.ebi.ac.uk/arrayexpress), 

under accession number E-MTAB-6698.  

https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/arrayexpress
https://www.ebi.ac.uk/arrayexpress
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Table 3.1: General characteristic for the data, this table indicates the percentage of general 

aspects of the data including the age and the grade percentage for the CRC and the control 

cohorts.  

 GSE17536 

(n=177) 

GSE13294 

(n=155) 

GSE26682 

(n=175) 

 

GSE14333 

(290) 

GSE4183 (Control cohort) 

Age, mean 65.5 65.4 65 67 Group Number Age 

Stage I, n 
(%) 

24(13.6) 0(0) N/A 44(15.1) Adenoma with 
high grade 
dysplasia 

9 73.6 

Stage II, n 
(%) 

57(32.2) 46(75.4) N/A 95(32.7) Adenoma 
without 
dysplasia 

6 65.2 

Stage III, n 
(%) 

57(32.2) 7(11.5) N/A 93(32.0) Inflammatory 
Bowel 
Disease 

15 43.8 

Stage IV, n 
(%) 

39(22) 8(13.1) N/A 61(21.0) Normal colon 8 50.6 

 

3.4.2. Stepwise ANN  

In this analysis, ANN algorithm was used to identify the concordant genes related to common 

members of the TP53 pathway in four CRC microarray datasets. The study includes 62 targets 

of the TP53 pathway, identified using the KEGG pathway database (https://www.genome.jp 

/keg/ pathway). In the database, TP53 pathway term used in the pathway text search, then 

the pathway name used to identify the entry ID (map04115), then the full gene list extracted 

manually from the database. The complete list of the targets was added to the appendix. Each 

target was regarded as a separate ANN model to identify the correlated gene panel to that 

target. ANN algorithm was applied to identify genes with the best predictive performance for 

each target. Initially, the algorithm sets random weights between -1 and 1, then the weights 

updated continuously using a three- layered feedforward back-propagation algorithm with a 

momentum of 0.5, the learning rate of 0.1. Based on MCCV strategy, samples were 

randomized into training, test, and validation with the ratio of 60:20:20 for each subset, then 

the samples were re-shuffled 50 times to ensure the model generalization. Model training was 

run for continuous analysis for a maximum of 3,000 epochs, with a 100 epoch window time, 

and stopped when there is no further improvement of the root mean square value of the test 

subset (RMS) on a threshold of 0.01.  
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The process was done for a minimum of two steps over 20 independent loops for each model.  

The results were then sorted and rank-ordered based on the root mean squared error (RMS) 

of the test subset, whereby the one with the lowest test error comes on the top of the list, and 

so on. The process was done for the 62 targets and for the four datasets, separately and 

independently. The top-200 genes for each target were extracted and merged using R 

programme, to identify the concordant genes across multiple repeats then across multiple 

targets. Figure 3.2 shows a flow diagram of stepwise ANN methodology used for the analysis. 

 

Figure 3.2: A flow diagram show methodology steps using Stepwise ANN for the analysis 

3.4.3. Network inference approach  

The results of the Stepwise ANN approach for the common genes associated with the TP53 

pathway were applied to the ANNI algorithm described previously in chapter 2, section 2.6. 

This method is used to determine the fundamental role of the genes selected by the Stepwise 

ANN on the TP53 pathway by quantifying genetic interaction and estimating the influence of 

Identification and 
extraction of TP53 

pathway targets using 
KEGG pathway database

Apply ANN model using 
ANN with feedforward 

back-propagation 
algorithm for each 
target to identify 

correlated gene panel

Train ANN model with 
MCCV strategy for each 

target samples 

Sort and rank results 
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subset

Identification of top-200 
genes for each target 

across multiple repeats and 
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multiple genes on a single fixed gene. In this method, each gene was considered as a single 

input, and the other genes (output) were used to predict the expression of that gene. The 

process is repeated for all genes in each dataset. The results were obtained by taking the 

average of 10 iterative cycles of analysis, which were then sorted to define the highest 

absolute values.  

Genes with the highest absolute value of interactions were proposed as hub genes and 

therefore were considered for visualization. Cytoscape version 3.8.0, an open software 

programme, was used for network visualization. The programme was downloaded using 

(https://www.cytoscape.org/) website. The platform is used to illustrate the top-100 strong 

interactions for each dataset separately, whereby the genes were presented as nodes and the 

interaction were presented as edges. Moreover, to increase the prediction power, driver 

analysis was performed by calculating the sum of the weights to estimate the general influence 

of specific genes on the whole system. Figure 3.3 shows a visual representation of the steps 

used in ANN interaction approach. 
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The Input file consist of the original dataset that contain the expression profile of the 
common genes identified by the Stepwise ANN 

 

The Input file imported to the ANN algorithm and the analysis run based on the criteria 
mentioned in section 2.6 

 

 

 

The output file consist of interaction matrix which generated in 10 iterative cycles of 
analysis calculated in a pairwise manner, where each gene was considered as a single 

input and the other genes were used to predict the expression of that gene. 

 

The average and absolute value of interaction for the 10 repeats for each gene pairs 
calculated using average function of excel and genes with the highest absolute value 

visualized using Cytoscape software. 

  

Figure 3.3: Visualization of the analysis steps used in ANN interaction approach 

3.4.4. Gene ontology and enrichment analysis  

To infer the biological and functional importance of the identified genes, functional enrichment 

analysis was done using Panther online database (http://www.pantherdb.org/). “Functional 

http://www.pantherdb.org/
http://www.pantherdb.org/
http://www.pantherdb.org/
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classification analysis” category was selected to compare the obtained list to a previously 

known gene set from literature.  

3.5. Results  

3.5.1. Prediction of common genes associated with known TP53 pathway 

members  

Five datasets were used in this analysis: GSE26682, GSE13294, GSE17536, GSE14333A 

and GSE14333B. Each of the 62 pathway members was examined using the ANN algorithm 

for 20 repeats. The results were filtered using R and R studio programmes to identify candidate 

genes that are highly connected to each pathway member. First the data imported using 

(import function) of the R studio Programme, then a (data. Frame function) used to create a 

two dimensional data structure, then the code (data. Frame c (occurrences)) used to count 

the similarity in the data. Then a (write. Table function) used to create a table that link each 

gene with its frequency of occurrences among investigated cohorts. The results were sorted 

and rank-ordered based on the RMS of the test subset, the one with the lowest test error 

comes on the top of the list, and so on. The top-ranked 200 genes for each pathway member 

were identified, extracted, and then merged using cbind function in the R software program 

(https://www.Rproject.org/) to identify the concordant gene list of the 20 repeats. The process 

was done for the 62 pathway members and for the five datasets separately and independently. 

A final table for the top-200 ranked genes for each of the 62 members for each dataset was 

generated to identify concordat genes among all members. Figure 3.4 summarizes the results 

of the comparison for the top common genes for all datasets, indicating 33% consistency 

between all investigated cohorts.  
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Figure 3.4: Commonality distribution frequency in the top-200 genes for the five datasets 

3.5.2. Integration and ontology evaluation for common predictors  

A further downstream ontological evaluation was performed to identify genes which are 

common between all cohorts, for a minimum of three pathway members and more. From the 

result of the Stepwise ANN algorithm, genes that appear common between the top-200 ranked 

genes for a minimum of three pathway members and for all cohorts were assumed to have 

more statistical power, and therefore were chosen for the ontology analysis. A minimum of 3 

out of 63 used for filtration since this number was found optimum when different filtering criteria 

were considered. At fist a minimum of 2 was considered which result in large number of 

similarities that could not be handled during the next step of analysis, then a minimum of 4 

and 5 members were also considered which indicate low similarities, for that a minimum of 3 

members was considered optimum and used for the downstream analysis.  

The results indicate the presence of 110 concordant genes between all investigated cohorts. 

The probability of finding 110 common genes in the top-200 ranked genes for a minimum of 3 

pathway members in 5 cohorts = 46.1255*10-7, as calculated based on the following formula:  

 (200/20545)3*5  (Equation 3.1)  

These  common  genes  were  then  submitted  to Panther  online database 

(http://www.pantherdb.org/) for gene ontology analysis, including two categories: (1) pathway 

analysis, which maps the gene list to known pathways; and (2) molecular function, which 
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indicates the events that a given protein is capable to do. The results are presented in Figures 

3.5 and 3.6. It can be observed that the most significant pathways were integrin signalling, 

inflammation mediated by chemokine, and apoptosis signalling pathway. For the 

molecular function analysis, extracellular matrix structural constituent, heparin binding, 

and glycosaminoglycan binding were highly significant.  

Moreover, the list of the common 110 genes was submitted to the EMBL-EBI European  

Bioinformatics Institute database (https://www.ebi.ac.uk/) and to the National Center for 

Biotechnology information (https://www.ncbi.nlm.nih.gov/) to identify genes that have been 

previously related to the TP53 pathway in the literature. In the search box (name of a particular 

gene and TP53 pathway) used as a search term. The results indicated that 56 genes have 

been linked to the pathway in previous studies, four of which (THBS2, KIF11, CCDC68, and 

DDX27) were related to CRC, and eight of which were known pathway members (CCNB1, 

CCNB2, CDK1, CHEK1, MDM2, RRM2, DDB2, and SERPINF1). A total of 54 genes had not 

previously been reported (based on the search criteria, there is no paper has been published 

in the literature to indicate a link between a particular gene and TP53 pathway). Table 3.2 

presents the gene list with their associated names and links to the original publications.  

 

Figure 3.5: Functional classification analysis (pathway analysis) for the 110 common genes 

across all cohorts ranked by P-value 

https://www.ebi.ac.uk/
https://www.ebi.ac.uk/
https://www.ebi.ac.uk/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Figure 3.6: Functional classification analysis (molecular function) for the 110 common genes 

across all cohorts ranked by P-vale 

Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

ANLN  Anilin Actin Binding 
Protein  

2 Screening Hub Genes as Prognostic  

Biomarkers of Hepatocellular  

Carcinoma by Bioinformatics  

Analysis - PubMed (nih.gov)  

ANXA2P2  Annexin A2 
pseudogene 2  

1 ANXA2P2: A Potential  

Immunological and Prognostic  

Signature in Ovarian Serous  

Cystadenocarcinoma via Pan- 

Carcinoma Synthesis. - Abstract - Europe PMC  

AURKB  Aurora Kinase B  7 Evaluation of clinical value and potential mechanism 
of MTFR2 in lung adenocarcinoma via bioinformatics 
- PubMed (nih.gov)  

BIRC5  Baculoviral inhibitor of 
apoptosis repeat-
containing 5  

28 Bioinformatics analysis of BIRC5 in human cancers - 
PubMed (nih.gov)  

  

38 % 

25 % 

22 % 

12 % 

3 % 

GENE ONTOLOGY - MOLECULAR FUNCTION 

extracellular matrix structural constituent glycosaminoglycan binding 

heparin binding structural molecule activity 

protein binding 
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

BRCA1  Breast cancer type 1 
susceptibility protein  

217 Overexpression of MLF1IP promotes colorectal 
cancer cell proliferation through BRCA1/AKT/p27 
signaling pathway. - Abstract - Europe PMC  

BUB1  budding uninhibited by 
benzimidazoles 1  

9 Cytogenetic and genetic pathways in therapy-related 
acute myeloid leukemia - PubMed (nih.gov)  

CAND1  Cullin associated and 
neddylation dissociated 
1  

2 Partial least squares based gene expression analysis 
in renal failure. - Abstract - Europe PMC  

CCDC68  Coiled-coil domain 
containing 68/ related 
to poor survival in 
colorectal cancer  

1 CCDC68 predicts poor prognosis in patients with 
colorectal cancer: a study based on TCGA data. -  

Abstract - Europe PMC  

BUB1B  Mitotic checkpoint 
serine/threonine-protein 
kinase BUB1 beta  

7 

 

Identification of hub genes and small molecule 
therapeutic drugs related to breast cancer with 
comprehensive bioinformatics analysis - PubMed 
(nih.gov)  

CDC20  Cell division cycle 20  13 MDM2-P53 Signaling PathwayMediated Upregulation 
of CDC20  

Promotes Progression of Human  

Diffuse Large B-Cell Lymphoma. -  

Abstract - Europe PMC  

CCNA2  Cyclin A2  25 The p53/miRNAs/Ccna2 pathway serves as a novel 
regulator of cellular senescence: Complement of the 
canonical p53/p21 pathway -  

PubMed (nih.gov)  

CDC6  Cell Division Cycle 6  3 p53-Dependent Regulation of Cdc6  

Protein Stability Controls Cellular  

Proliferation - PMC (nih.gov)  

CDCA5  Cell Division Cycle 
associated 5  

1 Silencing oncogene cell division cycle associated 5 
induces apoptosis and G1 phase arrest of non-small 
cell lung cancer cells via p53-p21  

signaling pathway - PubMed  

(nih.gov)  

DDX27  Dead Box helicase 27, 
related to colorectal 
cancer  

1 DEAD-box helicase 27 plays a tumor-promoter role by 
regulating the stem cell-like activity of human colorectal 
cancer cells - PMC (nih.gov)  
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

CDKN3  Cyclin Dependent Kinase 
Inhibitor 3  

5 YY1 suppresses proliferation and migration of 
pancreatic ductal adenocarcinoma by regulating the 
CDKN3/MdM2/P53/P21 signaling pathway - PubMed 
(nih.gov)  

FBN1  Fibrillin 1  4 Fibrillin-1, induced by Aurora-A but inhibited by BRCA2, 
promotes  

ovarian cancer metastasis - PubMed (nih.gov)  

LGALS1  Galectin 1  1 LGALS1 acts as a pro-survival molecule in AML - 
PubMed (nih.gov)  

DNAJC9  DnaJ Heat Shock Protein 
Family (Hsp40) Member 
C9  

1 Regulation of p53 and Cancer  

Signaling by Heat Shock Protein  

40/J-Domain Protein Family  

Members - PMC (nih.gov)  

DNMT1  DNA Methyltransferase 1  20 

 

Human maintenance DNA (cytosine5)-
methyltransferase and p53 modulate expression of 
p53repressed promoters - PMC  

(nih.gov)  

PGAM1  Phosphoglycerate mutase 
1  

4 Phosphoglycerate Mutase 1  

Activates DNA Damage Repair via  

Regulation of WIP1 Activity - PubMed (nih.gov)  

PLK2  Polo like kinase 2  1 

 

The p53 target Plk2 interacts with TSC proteins 
impacting mTOR signaling, tumor growth and 
chemosensitivity under hypoxic conditions - PMC 
(nih.gov)  

DTL  Denticleless E3 Ubiquitin 
Protein Ligase Homolog  

4 Not previously reported  

RAB27B  RAB27B, member RAS 
oncogene family  

1 

 

Correlation Between RAB27B and p53 Expression and 
Overall Survival  

in Pancreatic Cancer - PubMed (nih.gov)  

RAD51  RAD51 recombinase  60 CHK1 and RAD51 activation after DNA damage is 
regulated via urokinase receptor/TLR4 signaling - 
PubMed (nih.gov)  

RPS27L  Ribosomal protein S27 
like  

1 Ribosomal protein S27-like and S27 interplay with p53-
MDM2 axis s a target, a substrate, and a regulator - 
PMC (nih.gov)  

ECT2  Epithelial Cell 
Transforming 2  

11 Ect2-dependent rRNA synthesis is required for 
KRAS/TP53-driven lung adenocarcinoma - PMC 
(nih.gov)  
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

FANC1  FA Complementation 
Group I  

1 Not previously reported  

SNRPG  Small nuclear 
ribonucleoprotein G  

1 Downregulation of SNRPG induces cell cycle arrest 
and sensitizes human glioblastoma cells to 
temozolomide by targeting Myc through a p53-
dependent signaling pathway - PubMed (nih.gov)  

FDXR  Ferredoxin Reductase  3 FDXR regulates TP73 tumor suppressor via IRP2 to 
modulate  

aging and tumor suppression - PMC (nih.gov)  

SPAG5  Sperm associated antigen 
5  

1 p53 suppression is essential for oncogenic SPAG5 
upregulation in  

lung adenocarcinoma - PubMed  

(nih.gov)  

KIF11  Kinesin Family Member 
11, Key candidate 
biomarker related to 
Colorectal cancer.  

2 Integrative analyses of molecular pathways and key 
candidate biomarkers associated with  

colorectal cancer. - Abstract - Europe PMC  

ZEB2  Zinc finger E-box binding 
homeobox 2  

2 

 

Mutant p53-microRNA-200c-ZEB2Axis-Induced CPT1C 
Elevation  

Contributes to Metabolic  

Reprogramming and Tumor  

Progression in Basal-Like Breast  

Cancers. - Abstract - Europe PMC  

KIF23  Kinesin Family Member 
23  

1 

 

Mutation analysis and copy number alterations of KIF23 
in non-small-cell lung cancer exhibiting KIF23 
overexpression - PMC (nih.gov)  

KIF2C  Kinesin Family Member 
2C  

3 Large-Scale Transcriptome Data  

Analysis Identifies KIF2C as a  

Potential Therapeutic Target Associated With Immune 
Infiltration in Prostate Cancer - PMC (nih.gov)  

KIF4A  Kinesin Family Member 
4A  

1 Upregulate KIF4A Enhances  

Proliferation, Invasion of  

Hepatocellular Carcinoma and  

Indicates poor prognosis Across  

Human Cancer Types - PMC  

(nih.gov)  

MAD2L1  Mitotic arrest deficient 2-
like 1  

11 Pathological significance of MAD2L1 in breast cancer: 
an immunohistochemical study and meta-analysis - 
PMC (nih.gov)  
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

MCM2  Minichromosome 
Maintenance Complex 
Component 2  

10 

 

MCM2 promotes the proliferation, migration and 
invasion of cholangiocarcinoma cells by  

reducing the p53 signaling pathway - PubMed (nih.gov)  

MELK  Maternal Embryonic 
Leucine Zipper Kinase  

2 Inhibition of MELK produces potential anti‐tumour 
effects in bladder cancer by inducing G1/S cell cycle 
arrest via the ATM/CHK2/p53 pathway - PMC (nih.gov)  

NCAPH  Non-SMC Condensin I 
Complex Subunit H  

1 NCAPH plays important roles in human colon cancer - 
PMC (nih.gov)  

ORC1  Origin Recognition 
Complex Subunit 1  

1 Ubiquitylation, phosphorylation and Orc2 modulate the 
subcellular location of Orc1 and prevent it from inducing 
apoptosis - PMC (nih.gov)  

PRC1  Protein Regulator Of 
Cytokinesis 1  

7 Expression of the cytokinesis regulator PRC1 results in 
p53pathway activation in A549 cells but does not 
directly regulate gene expression in the nucleus - 
PubMed (nih.gov)  

RNASEH2A  Ribonuclease H2 Subunit 
A  

2 Prognostic Value of RNASEH2A-,  

CDK1-, and CD151-Related  

Pathway Gene Profiling for Kidney  

Cancers - PMC (nih.gov)  

SHCBP1  SHC Binding and Spindle 
Associated 1  

1 

 

SHCBP1 promotes tumor cell proliferation, migration, 
and invasion, and is associated with poor prostate 
cancer prognosis - PubMed (nih.gov)  

TUBB6  Tubulin Beta 6 Class V   1 Bioinformatics Analysis Discovers  

Microtubular Tubulin Beta 6 Class V  

(TUBB6) as a Potential Therapeutic  

Target in Glioblastoma - PMC (nih.gov)  

TYMS  Thymidylate Synthetase  21 Limits to TYMS and TP53 genes as  

predictive determinants for fluoropyrimidine sensitivity 
and further evidence for an RNA-based toxicity as a 
major influence - PMC (nih.gov)  

UBE2S  Ubiquitin Conjugating 
Enzyme E2 S  

3 UBE2S enhances the ubiquitination of p53 and exerts 
oncogenic  

activities in hepatocellular carcinoma  

- PubMed (nih.gov)  

UBE2T  Ubiquitin Conjugating 
Enzyme E2 T  

 3 UBE2T promotes autophagy via the p53/AMPK/mTOR 
signaling pathway  

in lung adenocarcinoma - PubMed  

(nih.gov)  
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

ZWINT  ZW10 Interacting 
Kinetochore Protein  

2 Hypoxia-Induced ZWINT Mediates  

Pancreatic Cancer Proliferation by  

Interacting With p53/p21 - PMC (nih.gov)  

FERMT2  FERM Domain 
Containing Kindlin 2  

1 The Kindlin2-p53-SerpinB2 signaling axis is required for 
cellular  

senescence in breast cancer | Cell  

Death & Disease (nature.com)  

THBS2  Thrombospondin 2, has 
immunological role in 
CRC  

2 Prognostic and Immunological Role of THBS2 in 
Colorectal cancer -  

PMC (nih.gov)  

EXO1  Exonuclease 1  4 Exonuclease 1 is a Potential  

Diagnostic and Prognostic Biomarker in Hepatocellular 
Carcinoma - PubMed (nih.gov)  

MCMBP  Minichromosome 
Maintenance Complex 
Binding Protein  

1 MCMBP promotes the assembly of the MCM2–7 
hetero-hexamer to ensure robust DNA replication in 
human cells - PMC (nih.gov)  

CKS1B  CDC28 Protein Kinase 
Regulatory Subunit 1B  

1 CKS1B as Drug Resistance-Inducing  

Gene—A Potential Target to Improve  

Cancer Therapy - PMC (nih.gov)  

MCM4  Minichromosome 
Maintenance Complex 
Component 4  

1 Identification, validation, and targeting of the mutant 
p53-PARPMCM chromatin axis in triple  

negative breast cancer - PubMed (nih.gov)  

E2F8  E2F Transcription Factor 
8  

2 

 

The atypical E2F family member E2F7 couples the p53 
and RB pathways during cellular senescence  

- PMC (nih.gov)  

CCNB1  Cyclin B1   Known pathway member  

CCNB2  Cyclin B2   Known pathway member  

CDK1  Cyclin Dependent Kinase 
1  

 Known pathway member  

CHEK1  Checkpoint Kinase 1   Known pathway member  

DDB2  Damage Specific DNA 
Binding Protein 2  

 Known pathway member  

MDM2  MDM2 Proto-Oncogene   Known pathway member  

RRM2  Ribonucleotide 
Reductase Regulatory 
Subunit M2  

 Known pathway member  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652205/
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.nature.com/articles/s41419-019-1774-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405306/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://pubmed.ncbi.nlm.nih.gov/35769911/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545642/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://pubmed.ncbi.nlm.nih.gov/28232952/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404383/


 

63 

Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

SERPINF1  Serpin Family F Member 
1  

 Known pathway member  

DCUN1D5  Defective In Cullin 
Neddylation 1 Domain 
Containing 5  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

DLGAP1  DLG Associated Protein 1   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

CDCA8  Cell Division Cycle 
associated 8  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

FEN1    

Flap Structure-Specific 
Endonuclease 1  

 

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

GINS2  GINS Complex Subunit 2   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

HAT1  Histone Acetyltransferase 
1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

KCTD9  Potassium Channel 
Tetramerization Domain 
Containing 9  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

KIF18A  Kinesin Family Member 
18A  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

MCM10  Minichromosome 
Maintenance 10 
Replication Initiation 
Factor  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

MCM3  Minichromosome 
Maintenance Complex 
Component 3  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

MND1  Meiotic Nuclear Divisions 
1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

NCAPD3  Non-SMC Condensin II 
Complex Subunit D3  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

NCAPG2  Non-SMC Condensin II 
Complex Subunit G2  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

NME1  NME/NM23 Nucleoside 
Diphosphate Kinase 1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

NUP37  Nucleoporin 37   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

OIP5  Opa Interacting Protein 5   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

PAICS  Phosphoribosylaminoimid
azole Carboxylase And  

Phosphoribosylaminoimid
azolesuccinocarboxamide 
Synthase  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

PARPBP  PARP1 Binding Protein   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

PBK  PDZ Binding Kinase   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

RACGAP1  Rac GTPase Activating 
Protein 1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

RAD51AP1  RAD51 Associated 
Protein 1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

RAN  RAN, Member RAS 
Oncogene Family  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

RFC2  Replication Factor C 
Subunit 2  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

RFC4  Replication Factor C 
Subunit 4  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

RFC5  Replication Factor C 
Subunit 5  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

SHMT2  Serine 
Hydroxymethyltransferas
e 2  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

SNRPD1  Small Nuclear 
Ribonucleoprotein D1 
Polypeptide  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

SNRPF  Small Nuclear 
Ribonucleoprotein 
Polypeptide F  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

SUV39H2  SUV39H2 Histone Lysine 
Methyltransferase  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

TIMELESS  Timeless Circadian 
Regulator  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

TIPIN  TIMELESS Interacting 
Protein  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

TK1  Thymidine Kinase 1   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

TOP2A  DNA Topoisomerase II 
Alpha  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

TRIP13  Thyroid Hormone 
Receptor Interactor 13  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

STON1  Stonin1   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

RAB31  Member RAS oncogene 
family  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

INO80C  INO80 Complex Subunit 
C  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

C18orf25  Chromosome 18 Open 
Reading Frame 25  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

PSMD9  Proteasome 26S Subunit, 
Non-ATPase 9  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  
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Table 3.2: List of common genes between all investigated datasets and their correlation to 

the TP53 pathway in the literature (as of 23/05/2022). 

Gene 
symbol 

Gene name No. publications Publication 

SARNP  SAP Domain Containing 
Ribonucleoprotein  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

DOCK5  Dedicator Of Cytokinesis 
5  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

HSPE1  Heat Shock Protein 
Family E (Hsp10) 
Member 1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

PTGES3  Prostaglandin E Synthase 
3  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

PPIL1  Peptidylprolyl Isomerase 
Like 1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

TMPO  Thymopoietin   No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

IER3IP1  Immediate Early 
Response 3 Interacting 
Protein 1  

 No previous report indicates a relation between the 
gene and the TP53 pathway based on the search 
criteria.  

 

3.5.3. Network and driver analysis for common predictors  

A further analysis was done using the ANNI approach described previously, to infer the 

interaction between the common 110 predicted genes identified in the previous stage. The 

analysis was performed for the list of the common 110 genes. The analysis of each set 

produces a matrix of ((110x (109-1)),12,210) predicted interactions. To reduce the risk of false 

positivises, the results were filtered by taking the average of the 10 repeats for each of the 

investigated sets.  

To increase the prediction power and to evaluate the general influence of the predicted genes, 

a driver analysis was performed using the results obtained by the ANNI algorithm. This 

analysis was performed by taking the sum of the interaction average. The method estimates 

the general influence of each gene on the whole network and elucidates genes with great 

influence on the pathway. A parallel analysis for the top-20 strongest drivers for all datasets 

was performed to identify the concordant drivers and to further reduce the risk of false 
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discovery. The results showed that PBK, KIF18A, and ORC1 were among the top sources 

(influencer drivers).  

Interestingly, the drivers with a high ranking in colorectal datasets tended to have a lower 

ranking in the control set, which gives an indication of the importance of these genes as drivers 

of colorectal cancer.  

Moreover, RPS27L and STON1 appeared among the top-ranked targets (influenced by 

drivers) in the diseased sets compared to the control set. There are two well-known pathway 

members appeared among the strongest drivers in the diseased sets compared to the control 

set: MDM2 among the top sources, and CDK1 among the top targets. The pathway member 

SERPINF1 appeared as a strong source and target, which may reflect the importance of this 

gene in health and disease. DDX27 appeared as a strong source with high rank in disease 

compared to normal set, it also appeared among strong targets however it got high rank in 

disease and normal state. The results are illustrated in Tables 3.3 and 3.4. 
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Table 3.3: Combined analysis for the top-20 strongest influencer sources for all cohorts 

Influencer (Sources) 

 Colorectal cancer Cohorts        Control Cohort     

Gene Symbol  Gene Name  Dataset  Rank  Sum of 
average  

ABS  
  

Gene Symbol  Rank  Sum of 
average  

ABS  

PBK  

 

PDZ Binding Kinase  

 

GSE14333-B  13  25.012  25.012  

  

PBK  

 

34  

 

-13.059  

 

13.05 

 

    GSE13294  9  23.666  23.666            

    GSE26682GPL570  5  14.438  14.438            

  GSE14333-A  15  13.075  13.075       

              

 

        

KIF18A  

 

Kinesin Family Member 18A  

 

GSE13294  2  27.0008  27.000 

8    

KIF18A  

 

68  

 

-8.317  

 

8.317  

 

    GSE14333-B  10  25.431  25.431            

    GSE14333-A  16  12.669  12.669            

  GSE26682GPL570  15  11.621  11.621       
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Table 3.3: Combined analysis for the top-20 strongest influencer sources for all cohorts 

Influencer (Sources) 

 Colorectal cancer Cohorts        Control Cohort     

Gene Symbol  Gene Name  Dataset  Rank  Sum of 
average  

ABS  
  

Gene Symbol  Rank  Sum of 
average  

ABS  

              

 

        

DDX27  

 

Dead Box Helicase  

 

GSE14333-A  10  -15.586  15.586  

  

DDX27  

 

99  

 

-3.032  

 

3.032  

 

    GSE26682GPL570  16  -11.558  11.558            

    GSE17536  13  -4.475  4.475            

  GSE13294  8  23.726  -23.726       
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Table 3.3: Combined analysis for the top-20 strongest influencer sources for all cohorts. The blue colour indicates known pathway members, 

and the red colour indicates new candidates 

Influencer (Sources) 

 Colorectal cancer Cohorts       Control Cohort     

Gene Symbol  Gene Name  Dataset  Rank  Sum of 
average  

ABS   Gene Symbol  Rank  Sum of 
average  

ABS  

              

 

        

ORC1  

 

Origin Recognition Complex 
Subunit  

1  

 

GSE14333-B  5  28.077  28.077  

  

ORC1  

 

88  

 

5.856  

 

-5.856  

 

    GSE13294  3  25.44  25.44            

    GSE17536  1  22.071  22.071            

  GSE14333-A  17  11.731  11.731       
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Table 3.3: Combined analysis for the top-20 strongest influencer sources for all cohorts. The blue colour indicates known pathway members, 

and the red colour indicates new candidates 

Influencer (Sources) 

 Colorectal cancer Cohorts       Control Cohort     

Gene Symbol  Gene Name  Dataset  Rank  Sum of 
average  

ABS   Gene Symbol  Rank  Sum of 
average  

ABS  

MDM2  

 

Mouse double minute 2 homolog  

 

GSE14333-B  18  23.63  23.63  

  

MDM2  

 

35  

 

12.696  

 

12.69 

 

  GSE26682GPL570  13  11.872  11.872       

              

 

        

SERPINF1  

 

Serpin Family F Member 1  

 

GSE14333-A  1  -26.668  26.668  

  

SERPINF1  

 

13  

 

-18.731  

 

18.73 

 

  GSE26682GPL570  14  11.872  11.872       
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Table 3.4: Combined analysis for the top-20 strongest influenced targets for top-20 most influenced targets 

Influenced by (Targets) 

Blue colour indicates known pathway members and the red colour indicates new candidates 

Colorectal cancer Cohorts       Control Cohort     

Gene Symbol  Gene Name  Dataset  Rank  Sum of average  ABS    Gene Symbol  Rank  Sum of average  ABS  

DDX27  

 

Dead Box Helicase  

 

GSE14333-B  1  123.512  -123.512  

  

DDX27  

 

9  

 

-61.767  

 

61.767  

 

    GSE26682-GPL570  1  -99.993  99.993            

    GSE13294  3  -93.487  93.487            

    GSE14333-A  10  -15.586  15.586            

  GSE17536  13  -4.475  4.475       

              

 

        

STON1  

 

Stonin1  

 

GSE14333-A  2  -103.138  103.138  

  

STON1  

 

58  

 

-9.45096  

 

9.45096  

 

    GSE13294  1  -97.73  97.73            

    GSE14333-B  5  -90.484  90.484            

    GSE17536  17  -84.403  84.403            

  GSE26682-GPL570  10  -30.028  30.028       
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Table 3.4: Combined analysis for the top-20 strongest influenced targets for top-20 most influenced targets 

Influenced by (Targets) 

Blue colour indicates known pathway members and the red colour indicates new candidates 

Colorectal cancer Cohorts       Control Cohort     

Gene Symbol  Gene Name  Dataset  Rank  Sum of average  ABS    Gene Symbol  Rank  Sum of average  ABS  

              

 

        

RPS27L  

 

Ribosomal Protein S27 Like  

 

GSE26682-GPL570  11  28.762  28.762  

  

RPS27L  

 

82  

 

9.576  

 

9.576  

 

    GSE13294  2  94.935  94.935            

    GSE14333-B  18  50.695  50.695            
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Table 3.4: Combined analysis for the top-20 strongest influenced targets for top-20 most influenced targets 

Influenced by (Targets) 

Blue colour indicates known pathway members and the red colour indicates new candidates 

Colorectal cancer Cohorts       Control Cohort     

Gene Symbol  Gene Name  Dataset  Rank  Sum of average  ABS    Gene Symbol  Rank  Sum of average  ABS  

    GSE14333-A  6  59.717  59.717            

  GSE17536  5  56.264  56.264       

              

 

        

SERPINF1  Serpin Family F Member 1  GSE26682-GPL570  15  17.126  17.126   SERPINF1  6  -64.614  64.614  

 SERPINF1 Serpin Family F Member 1 GSE14333-A  7  -58.57  58.57       

 SERPINF1 Serpin Family F Member 1 GSE13294  19  -35.981  35.981       

SERPINF1 Serpin Family F Member 1 GSE17536  7  -7.859  7.859       

           

CDK1  

 

Cyclin Dependent Kinase 1  

 

GSE14333-A  9  55.655  55.655  

  

CDK1  

 

50  

 

-20.198  

 

20.198  

 

    GSE14333-B  12  61.38  61.38            

  GSE17536  16  88.646  88.646       
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Furthermore, the STON1 subnetwork was selected for combined analysis and 

visualized using Cystoscope software platform. STON1 appear as a second gene with 

high ranking among all investigated CRC cohorts and also has lower ranking in the 

control cohort compared to DDX27 which appear as a first top ranked gene in all CRC 

cohorts but also it appears as a top ranked in the control cohort. Another reason for 

choosing STON1 gene is that it has not been reported based on the literature-based 

search explained previously. This analysis was done by identifying and taking the 

average value for genes with consistent correlation with STON1 across all investigated 

datasets. The results of this analysis are shown in Figures 3.7 and 3.8. Figure 3.7 

shows the combined disease subnetwork for STON1, which appears as a hub target 

that is negatively influenced by 54 genes, 4 of which are known pathway members. 

Figure 3.8 shows STON1 subnetwork in the normal set, with STON1 subnetwork 

negatively influenced by 9 genes, 4 of which are known pathway members.  

Further analysis was done using the Human Protein Atlas database (The Human 

Protein Atlas) to identify the expression of STON1 protein in CRC. The results showed 

low to moderate expression of STON1 protein in 8 out of 12 investigated cases. Figure 

3.9 shows digital slide images for all cases (adapted from The Human Protein Atlas).  

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Figure 3.7: STON1 combined disease subnetwork 

Shows STON1 as a hub target with 4 negative interactions with known 

pathway targets and 50 negative interactions with genes not related to the 

pathway 

 

Figure 3.8: STON1 normal subnetwork 

Shows two negative interactions with known pathway members 

and 7 negative interaction with genes not related to the pathway 
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Slide 1: Negative staining Slide 2: Negative staining 

  

Slide 3: Negative staining Slide 4: Negative staining 

 
 

Slide 5: Weak-moderate staining Slide 6: Moderate staining 
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Slide 7: Weak Slide 8: Weak-moderate 

  

Slide 9: Weak Slide 10: Weak 

  

Slide 11: Weak Slide 12: Weak-moderate 

Figure 3.9: Human Protein Atlas results for STON1 protein expression  

Shows weak- moderately detected immunostaining in 8 out of 12 and negative staining in 

the reaming 4 examined 

Adapted from Human Protein Atlas (Expression of STON1 in colorectal cancer - The Human Protein Atlas) 

https://www.proteinatlas.org/ENSG00000243244-STON1/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000243244-STON1/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000243244-STON1/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000243244-STON1/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000243244-STON1/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000243244-STON1/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000243244-STON1/pathology/colorectal+cancer
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3.6. Summary and conclusion  

This chapter applied ANN-based data mining to analyse four independent microarray datasets 

for colorectal cancer, and a control set used for comparison. The aim was to identify hub 

drivers and model the interactions between common members of the TP53 pathway in CRC. 

A random MCCV strategy was used for each model to increase the statistical power and 

minimize false discovery. The analysis includes 62 known pathway members, each of which 

was considered as a separate ANN model, in order to identify the top-200 ranked genes 

associated with each member. The findings were integrated to identify the commonalities 

across the five datasets for a minimum of three pathway members and more compared to the 

normal set.  

The results produced a list of 110 concordant genes involved in several biological processes, 

including apoptosis and angiogenesis signalling pathways. A literature mining search 

suggested that 56 out of 110 genes linked to the TP53 pathway in this research were reported 

in previous studies, four of which (THBS2, KIF11, CCDC68, and DDX27) were related to CRC, 

while 8 out of 110 were known pathway members (CCNB1, CCNB2, CDK1, CHEK1, MDM2, 

RRM2, DDB2, and SERPINF1). It was found 45 out to 110 genes were not previously reported.  

ANN-based network approach was used to infer the potential biological interactions between 

the concordant genes, and a driver analysis was used to identify the key hub drivers of the 

system based on their general influence. A combined analysis was then applied for all sets to 

find the concordant strongest drivers. The results showed that a total of five common drivers 

do not belong to the TP53 pathway: three of them appear as the strongest source drivers 

(PBK, KIF18A, and ORC1), and two of them appear as the strongest target drivers (STON1 

and RPS27L). Genes that belong to the TP53 pathway also appear among the strongest 

drivers; MDM2 was found to be among the top strongest sources, and CDK1 was found to be 

among the top strongest targets. A summary of chapter overall findings provided in Figure 

3.10.  

This chapter provides evidence for the possibility of using ANN-based approaches as a 

pathway-mining tool to add knowledge and gain new insights. However, some issues related 

to the data, including the collection processes and lack of important information, limit the 

possibility of performing a deeper analysis. Chapter 4 seeks to identify the hub drivers 

associated with the TP53 pathway based on the mutation status of the TP53 gene.  
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Data Analysis Overview 

 62 known TP53 pathway members analysed separately as ANN models. 

 Top -200 ranked genes associated with each member identified.  

 Integration of findings across five datasets for commonalities.  

 

Gene Discovery 

 110 genes identified involved in biological processes like apoptosis and 

angiogenesis. 

 Literature mining showed 56 genes linked to TP53 pathway, with 4 related to CRC. 

 8 out of 110 genes were known pathway members 

 

Biological Interaction Inference 

 ANN-based network approach used to infer biological interactions between 

concordant genes. 

 Driver analysis applied to identify key hub drivers based on general influence. 

 

Integration Analysis 

 Five common drivers identified not part of TP53 pathway. 

 MDM2 identified as top source driver, CDK1 as top target driver, both part of TP53 

pathway. 

 

Key Drivers 

 Source Influencers: PBK, KIF18A, ORC1. 

 Target Influencers: STON1, RPS27L. 

 TP53 pathway genes (MDM2, CDK1) also among top influencers.  

Figure 3.10: A schematic summarise the overall findings of the chapter 
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CHAPTER 4                                                                              

ANN DATA MINING ANALYSIS OF THE TP53 PATHWAY BASED 

ON TP53 MUTATION STATUS  

4.1. Introduction  

The previous chapter described the utility of ANN-based data mining approaches for modelling 

the TP53 pathway in CRC. The results indicated fundamental interactions and potential 

molecular drivers associated with the pathway. This chapter presents the analysis of the TP53 

path based on the mutation status of the TP53 gene in three cancer types (colorectal, gastric, 

and pancreatic) using data from The Cancer Transcriptome Atlas. The TP53 mutations, as 

mentioned in section 1.5.2, represent a fundamental change during tumorigenesis, with the 

loss of the Wild-type TP53 functionality and the gain of additional oncogenic roles that support 

the survival and growth of tumour cells. The majority of TP53 alterations are Missense 

mutations, which attenuate the normal function of the TP53 protein. The MutantTP53 protein 

has a different ability to change the tumour cell proteome and transcriptome by developing 

new interactions with other cellular proteins, transcription regulators, and enzymes (Mantovani 

et al., 2019).  

Several systematic projects have been dedicated to investigating Mutant TP53 in cancer, 

including the TCGA, which identified common alterations in the TP53 pathway, involving the  

TP53 gene. Kandoth et al.’s (2013) conducted TCGA pan-cancer research on mutation 

frequency across 12 major cancer types. The study identified TP53 as the most mutated gene, 

with 42% of samples harboring TP53 mutations. Those samples were from serous ovarian 

and endometrial carcinomas and basal subtype breast tumours. The study used clustering 

analysis to identify the mutation frequency of common genes associated with different cancer 

types and a pairwise statistical method to identify mutual exclusive and co-occurrence among 

the most significantly mutated genes. Survival analysis correlated the most significant 

mutations with clinical outcomes, but the study did not consider pathway-level analysis. The 

current research selected TCGA data for analysis of the TP53 pathway, since it provides a rich 

source of information and contains high-quality gene expression profiles and details about 

mutation types. It renders the precise study of the TP53 pathway in the Mutant- and Wild-type 

state of gene feasible.  
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4.2. Chapter aims  

This chapter supports the general aim of the project by providing evidence for the possibility 

of using ANN-based data mining approaches as pathway modelling tool through investigation 

of the TP53 pathway among three cancer types, to identify common and differential predictors 

associated with the pathway in Mutant- and Wild-type TP53. It uses the differential predictors 

to build interaction network and to identify differential molecular drivers associated with the 

pathway in the Missense TP53 mutation status. Also, this study compares ANN interaction 

network results with the MetaCore pathway Interactome results.  

4.3. Chapter objectives  

 Collect RNA sequencing data using UCSC Xena browser data hubs, and identify common 

TP53 pathway members using the (KEGG) pathway database.  

 Identify two cohorts based on the mutation status of the TP53 gene (Mutant and Wild-type 

TP53 groups).  

 Build ANN models for each member of the pathway in each group separately and 

independently.  

 Determine the top-200 ranked genes associated with each member in each group.  

 Identify the concordant genes between different members in each cohort.  

 Define distinctive genes that are significantly associated with each group.  

 Build ANN of interaction (ANNI) for specific mutation type (Missense TP53) cohort.  

 Predict the key interactions and the hub differential drivers associated with the Missense TP53 

cohort.  

 Achieve the above objectives for three cancer types (separately and independently).  

4.4. Methods  

Data from three TCGA cohorts were used for this analysis for Colorectal (COADREAD), 

Pancreatic (PAAD), and Stomach (STAD). The data were obtained using the UCSC Xena 

platform (https://tcga.xenahubs.net). For the purpose of the analysis, the expression profile 

and the somatic mutation of the TP53 gene were included. The expression profiles for 20,531 

transcripts for each cohort were downloaded as normalized data from the Xena browser gene 

https://tcga.xenahubs.net/
https://tcga.xenahubs.net/
https://tcga.xenahubs.net/
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expression RNA sequencing TCGA Hub. The gene expression was measured using Illumina 

HiSeq Sequencing Platform from the TCGA genome centre. The data was estimated as reads 

per kilobase of exon model per million mapped reads (RPKM) values, and were mapped using 

UCSC Xena HUGO probeMap.  

• The COADREAD cohort: contains gene expression information for 434 colon and rectum 

adenocarcinoma samples from the TCGA was acquired through RNA sequencing (polyA + 

IIIuminaHiSeq). The dataset underwent pancancer normalization, where gene expression 

across all TCGA cohorts were combined, averaged per gene, and then COADREAD cohort 

extracted.  

• The PAAD cohort: contains 183 gene expression data for pancreatic adenocarcinoma 

samples from the TCGA obtained using RNA sequencing (polyA+ IIIuminaHiSeq). The data 

has been normalized across all TCGA cohorts using a pancancer normalization method 

generated at UCSC, the gene expression values from RNA sequencing across all TCGA 

cohorts were combined, mean-centered per gene, and then the data specific to the PAAD 

cohort was extracted. 

• The STAD cohort: Dataset (gene expression RNAseq - IlluminaHiSeq BC) contains RNA 

sequencing data for stomach adenocarcinoma of 417 samples. The data were obtained from 

The Cancer Genome Atlas (TCGA) and were generated using the IIIumina HiSeq 2000 

platform by the British Columbia Cancer Agency TCGA Genome characterization Center. 

Level 3 data was obtained from the TCGA Data coordination Center. This dataset provides 

estimates of gene expression at the transcript level, represented as RPKM.  

The TP53 mutation details were obtained for each cohort from Xena browser- somatic 

mutation (MC3 gene-level non-silent mutation TCGA Hub). ANN and network inference 

approaches were used following the protocols described in the previous chapter. Figure 4.1 

provide methodology details and stages of analysis.  
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RNA sequencing and mutation details of TP53 gene were downloaded as zip files using UCSC Xena platform 
(UCSC Xena (xenabrowser.net) and then file extraction were done using 7.zip program. 

 

Identification of TP53 pathway targets using KEGG pathway database using the term TP53 pathway in the pathway 
text search, then the full gene name was identified and extracted using the entry ID (map04115). 

 

RNA sequencing files were classified based on the TP53 mutation status using patient identification number into two 
groups (the mutant and the wild-type). 

 

Application of ANN model using ANN with feedforward back-propagation algorithm described in Chapter 3, section 
3.4.2 for to identify correlated gene panel for each target of each group. 

 

Sorting and ranking of results based on RMS of test subset for each group using Microsoft Excel program. 

 

Identification of distinctive predictors associated with the pathway with their frequency of occurrence in each group 
by calculating the P-value using student t-test (t of the Microsoft Excel program). 

 

Identification of top- ranked genes associated with each target for each group using Microsoft Excel program. 

 

Sample identification numbers used to identify and extraction of sample with specific mutation type (missense TP53) 
and ANNI algorithm used to build interaction network for distinctive predictors associated with missense TP53 based 

on the protocol mentioned in Chapter2, section 2.6. 

 

Top 100 interaction extracted and submitted to Cytoscape software for network visualization. 

 

Expression tables for missense and wild-type TP53 were submitted to cBioportal and MetaCore platforms for 
comparison and verification. 

 

A table that represents the rank order of the source and target drivers based on their total average of interaction and 
novelty was prepared and submitted to R programme (https://www.R-project.org/) for visualization. 

 

Stages of analysis were done for three TCGA cohorts (COADREAD, PAAD and STAD) separately and 
independently. 

Figure 4.1: Methodology details and stages of analysis 

https://xenabrowser.net/datapages/?cohort=TCGA%20Colon%20Cancer%20(COAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
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4.5. Results and discussion  

4.5.1. Analysis of TCGA-COADREAD Cohort  

The Stepwise ANN approach, as explained in Chapter 2, was used in this study for the 

identification of common genes with the best predictive performance for each member of the 

pathway in the Mutant- and Wild-type TP53 cohorts, separately and independently. The results 

were then filtered out to identify the top-200 ranked genes that are common among all 

members. A comparative analysis was then applied using student t-test in the MS Excel 

programme, to identify common and distinctive predictors with significant differential 

expression between the Mutant- and Wild-type TP53 cohorts (P-value<0.05).  

The analysis was first done for the TCGA-COADREAD data, then for the PADD and STAD 

data. The results revealed a total of 65 distinctive predictors associated with the 

TCGACOADREAD Mutant TP53; 79 distinctive predictors for the TCGA-COADREAD Wild-

type TP53 cohort; and 37 significant concordant predictors between the two cohorts. Table 4.1 

summarizes the results for the top-ranked predictors, with their frequency of appearance 

among all TP53 pathway members for the TCGA-COADREAD (Mutant- and Wild-type TP53 

cohorts. and associated p-values.  

 

Table 4.1: Top-ranked predictors obtained using Stepwise ANN approach 

 

Concordant 
predictors for both 

cohorts 

Distinctive predictors for TCGA-COADREAD 
Wild-type TP53 

Distinctive predictors for TCGA-COADREAD 
Mutant TP53 

Gene 
Symbol 

P-value Gene Symbol Frequency P-value Gene Symbol Frequency P-value 

FANCB  0.009 

3  

FDXR  8  4.77E-18  C5orf41  9  0.0035  

CCT2  0.006 

8  

C15orf23  7  0.0177  CHAF1B  8  0.0339  

H2AFZ  0.000 

2  

C3orf26  7  0.0142  ERCC6L  8  0.0040  

ORC6L  0.002 

9  

PBK  7  2.04E-10  KIAA0101  8  0.0014  

AURKA  1.46E 

-06  

RPS27L  7  5.02E-27  SERINC1  7  0.0182  
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Table 4.1: Top-ranked predictors obtained using Stepwise ANN approach 

 

Concordant 
predictors for both 

cohorts 

Distinctive predictors for TCGA-COADREAD 
Wild-type TP53 

Distinctive predictors for TCGA-COADREAD 
Mutant TP53 

Gene 
Symbol 

P-value Gene Symbol Frequency P-value Gene Symbol Frequency P-value 

CDCA5  0.040 

2  

RUVBL2  7  0.0007  TRAIP  7  0.0337  

MND1  0.036 

6  

TNFRSF10B  7  3.11E-10  AURKAIP1  6  0.0007  

PA2G4  0.029 

4  

TNFSF9  7  4.21E-11  BMPR2  6  0.0023  

RAN  0.006 

2  

TRIAP1  7  2.48E-10  CLCN7  6  2.075E-14  

RFC4  0.031 

6  

UBE2N  7  0.0032  KIF20A  6  0.0447  

RFC5  0.019 

0  

ARHGEF11  6  0.0321  MYBL2  6  1.089E-08  

BUB1B  0.015 

1  

BAT2  6  0.0153  NAP1L3  6  0.0384  

CCNA2  0.009 

9  

BOLA3  6  0.0450  PGAM5  6  0.0264  

CDCA8  0.035 

2  

C4orf46  6  0.0372  PGR  6  0.0180  

CDKN3  0.036 

1  

DDAH2  6  3.61E-06  PSAT1  6  0.0350  

DBF4  0.029 

4  

ERH  6  0.00240  RAB27A  6  2.732E-06  

DSCC1  0.000 

98  

GEMIN7  6  0.0059  RAD51  6  0.0172  

E2F1  1.03E 

-07  

MDM2  6  6.77E-31  RIF1  6  0.0451  

FAM54A  0.042 

6  

NR3C2  6  0.0020  SECISBP2L  6  0.0013  

NUP37  0.021 

2  

PRMT1  6  0.0006  TELO2  6  0.0256  
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Table 4.1: Top-ranked predictors obtained using Stepwise ANN approach 

 

Concordant 
predictors for both 

cohorts 

Distinctive predictors for TCGA-COADREAD 
Wild-type TP53 

Distinctive predictors for TCGA-COADREAD 
Mutant TP53 

Gene 
Symbol 

P-value Gene Symbol Frequency P-value Gene Symbol Frequency P-value 

ORC1L  0.032 

0  

PSMA3  6  0.0183  ZBTB4  6  0.0140  

RCC1  0.028 

1  

SKA1  6  0.00010  ACD  5  2.142E-05  

SKA3  9.95E 

-07  

SNX30  6  0.0161  ATP5F1  5  2.692E-05  

SNRPF  0.032 

4  

ZZEF1  6  0.00026  BOC  5  0.0033  

SPC25  0.042 

2  

AEN  5  4.06E-11  BRCA1  5  0.0089  

TPX2  3.76E 

-07  

AKAP13  5  0.0130  C13orf33  5  0.0190  

 

Moreover, the distinctive predictors for the TCGA-COADREAD Mutant TP53 cohort identified 

in the previous stage were assumed to have more statistical power. They could be used to 

build network inference and to identify the key drivers which can be used to differentiate this 

cohort. ANNI approach was used for the analysis of patient samples that harbour TP53 

Missense mutations in the TCGA-COADREAD Mutant TP53 cohort (since it represents the 

most frequent mutation among all types of mutations in this set, with a total number of 233 out 

of 242 Mutant samples). The analysis of this set produced a matrix of ((96x (95-1)) 8930 

predicted interactions. The results were filtered, and a driver analysis was performed using a 

similar method (described in section 3.5). The top-100 interactions were presented using 

Cytoscape software.  

The results show that SESN1, SIAH1, GADD45G, and CCNG1/TNFRF10B were key hubs, 

with mainly negative interactions (with genes that are not related to the pathway). SESN1 

appears to be a major subnetwork containing five negative interactions with known TP53 

pathway members, including TP53, SIAH1, CCNG1, BCL2, and APAF1, and one positive 

interaction with FAS. It also contains 14 main negative interactions with genes that are not 

related to the pathway, the most common of which are XPOT, TRAIP, and ZGPAT. It has two 

main positive interactions with LIMA1 and DUSP4. SESN1 is a member of the sestrins family, 
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a recent report indicates a natural killer function of sestrins in one type of immune system cells 

(senescent-like CD8 T cells) (Pereira et al., 2020). By aligning this function of SESN1 with the 

presented subnetwork, the Missense TP53 may have an immune suppression role, which 

could be executed through its negative regulation on SESN1. For this SESN1 subnetwork was 

selected for presentation. LIMA1 was previously identified as a direct transcriptional target of 

TP53 and a possible therapeutic target for cancer (Ohashi et al., 2017). The presented 

subnetwork supports the association of LIMA1 with TP53 and indicates that this gene may 

exert its effect through a positive correlation of SESN1. Figure 4.2 shows the Cytoscape image 

for the top 100 interactions of the TCGA-COADREAD-MissenseTP53 mutation cohort. SESN1 

mRNA protein expression was tested using the cBioPortal platform (cBioPortal for Cancer 

Genomics). The results indicate significantly higher expression in the Missense compared to 

the Wild-type cohort.  

https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.cbioportal.org/
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Figure 4.2: Cytoscape image for the TCGA-COADREAD-MissenseTP53 cohort 

The blue nodes indicate known TP53 targets, and the red nodes indicate new candidates. The blue lines indicate positive interactions, and the 

red lines indicate negative interactions. Line thickness indicates interaction strength. Hub nodes are those with more than 5 interactions.  
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Figure 4.3: TCGA-COADREAD-MissenseTP53-SESN1 subnetwork 

Contains 6 interactions with known pathway members and 16 interactions with genes not 

belonging to the pathway.    
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Figure 4.4: Expression of SESN1 gene in cBioPortal 

The gene is more highly expressed in the TCGA-COADREAD-Missense TP53 cohort 

compared to the TCGA-COADREAD-WTTP53 cohort  

Source: cBioPortal.  

 

Figures 4.5 and 4.6 represent differential drivers as targets and sources for the TCGA-

COADREAD-MissenseTP53 cohort. Figure 4.5 indicates the top-12 target drivers with a total 

positive interaction (stimulatory effect). Three of them are known TP53 pathway members 

(CASP3, DDB2, and APAF1) and the remaining (RIF1, EVC2, TXLNA, GFI1, NCAPD3, 

MAP3K3, PRC1, CENP1 and CBX7) are novel to the pathway. It also shows target drivers 

with a total negative interaction (inhibitory effect) representing a large pole of the interaction 

network (83 out of 95). A similar analysis was done for the TCGA-COADREAD-MissenseTP53 

source drivers, which are represented in Figure 4.6, showing six differential source drivers 

with the strongest positive influence: CENP1, DUSP4, PHLDA1, KIF20A, KIF11, and TOP2A. 

The remaining sources have a generally negative impact on the pathway.  

Missense TP53 Wild-Type TP53 
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Figure 4.5: Differential drivers (as targets) associated with the TCGA-COADREAD-

MissenseTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 pathway members, and red 

colour indicates novel targets. 
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Figure 4.6: Differential drivers (as sources) associated with the TCGA-

COADREADMissenseTP53  

Sorted based on the average of interactions. Blue colour indicates known TP53 pathway members, and red colour 

indicates novel sources.  

Further analysis was conducted using the MetaCore pathway analysis tool. The distinctive 

predictors for the TCGACOADREAD-MissenseTP53 cohort were submitted to a web-based 

platform (https://portal.genego.com/) to uncover the significant interactions; the results were 

then compared to the ANN driver analysis results. Although this tool uses a different statistical 

method based on the FDR-adjusted p-value, there was notable consistency with the ANN-

driver analysis results. Specifically, four genes emerged as top differential source drivers also 

appeared as significant network objects (DUSP4, PHLDA1, KIF20A, and TOP2A) (refer to 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fportal.genego.com%2F&data=05%7C01%7Cdalia.mehaisi2018%40my.ntu.ac.uk%7C620d23725c4b44b4b65208da31c9a79a%7C8acbc2c5c8ed42c78169ba438a0dbe2f%7C1%7C0%7C637877039402760698%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rGUtvRuuVO4iBEejynOfY8EocqAWJ2D%2BuPp6CSEgbOE%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fportal.genego.com%2F&data=05%7C01%7Cdalia.mehaisi2018%40my.ntu.ac.uk%7C620d23725c4b44b4b65208da31c9a79a%7C8acbc2c5c8ed42c78169ba438a0dbe2f%7C1%7C0%7C637877039402760698%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rGUtvRuuVO4iBEejynOfY8EocqAWJ2D%2BuPp6CSEgbOE%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fportal.genego.com%2F&data=05%7C01%7Cdalia.mehaisi2018%40my.ntu.ac.uk%7C620d23725c4b44b4b65208da31c9a79a%7C8acbc2c5c8ed42c78169ba438a0dbe2f%7C1%7C0%7C637877039402760698%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=rGUtvRuuVO4iBEejynOfY8EocqAWJ2D%2BuPp6CSEgbOE%3D&reserved=0
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figure 4.6). Dual-specificity phosphatase 4 (DUSP4) has been reported to be involved in 

proliferation, downregulation of DUSP4 suppress the proliferation of cancer cell line (Ratsada 

et al., 2020). A recent publication indicates Pleckstrin homeolike domin, family A, member 1 

(PHLDA1) as a TP53 target which contribute to cell apoptosis mediated by the TP53 gene 

(Song et al., 2023). Topoisomerase II α (TOP2A) has been identified to facilitate the 

development of high-grade serous ovarian cancer (Gao et al., 2020). 

Additionally, a similar number of top differential target drivers (GIFI1, CASP3, MAP3K3, and 

DDB2) (refer to figure 4.5) were also observed as corresponding significant objects in 

MetaCore interaction results.  

This convergence underscores the robustness of the findings across different analytical 

methodologies. The results are presented in Table 4.2.  
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Table 4.2: MetaCore Interactome results for the most significant interaction that match ANN driver analysis results 

Input IDs  Network object name  Input IDs for 
corresponding object  

name  

Corresponding network 
object name  

Input 
IDs  

Network 
object name  

Input IDs for 
corresponding object  

name  

Corresponding network object 
name  

DUSP4  Dual Specificity Phosphatase 
4  

MDM2  MDM2  BAX  Bax  GFI1  Growth Factor Independent 1 
Transcriptional Repressor  

DUSP4  Dual Specificity Phosphatase 
4  

SETD1A  SET1A  MD 

M2  

MDM2  CASP3  Caspase-3  

DUSP4  Dual Specificity Phosphatase 
4  

TP53  p53  RAD 

51  

Rad51  CASP3  Caspase-3  

PHLDA1  Pleckstrin Homology Like  

Domain Family A Member 1  

BAX  Bax  APA 

F1  

Apaf-1  CASP3  Caspase-3  

PHLDA1  Pleckstrin Homology Like  

Domain Family A Member 1  

SETD1A  SET1A  ATM  ATM  CASP3  Caspase-3  

PHLDA1  Pleckstrin Homology Like  

Domain Family A Member 1  

TP53  p53  BCL 

2  

Bcl-2  CASP3  Caspase-3  

PHLDA1  Pleckstrin Homology Like  

Domain Family A Member 1  

ZEB1  TCF8  BRC 

A1  

Brca1  CASP3  Caspase-3  

KIF20A  Kinesin Family Member 20A  MYBL2  b-Myb  FAS  FASN  MAP3K3  Mitogen-Activated Protein Kinase 
Kinase Kinase 3  

TOP2A  DNA Topoisomerase II Alpha  ATM  ATM  BRC 

A1  

Brca1  MAP3K3  Mitogen-Activated Protein Kinase 
Kinase Kinase 3  
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Table 4.2: MetaCore Interactome results for the most significant interaction that match ANN driver analysis results 

Input IDs  Network object name  Input IDs for 
corresponding object  

name  

Corresponding network 
object name  

Input 
IDs  

Network 
object name  

Input IDs for 
corresponding object  

name  

Corresponding network object 
name  

TOP2A  DNA Topoisomerase II Alpha  BRCA1  Brca1  RAD 

51  

Rad51  DDB2  Damage Specific DNA Binding 
Protein 2  

TOP2A  DNA Topoisomerase II Alpha  MYBL2  b-Myb  TP5 

3  

p53  DDB2  Damage Specific DNA Binding 
Protein 2  

TOP2A  DNA Topoisomerase II Alpha  PGR  PR (nuclear)  BCL 

2  

Bcl-2  DDB2  Damage Specific DNA Binding 
Protein 2  

TOP2A  

 

DNA Topoisomerase II  

Alpha  

 

TP53  

 

p53  

 

FAS  FASN  DDB2  Damage Specific DNA Binding 
Protein 2  

    GFI1  GFI-1  DDB2  Damage Specific DNA Binding 
Protein 2  

Blue colour indicates known TP53 pathway members, and orange colour indicates input that are novel to the TP53 pathway. 
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4.5.2. Analysis of TCGA-PAAD Cohort  

The analysis for the TCGA-PAAD project was performed using a similar method to that 

described above (section 4.5.1). The results revealed 159 distinctive significant predictors for 

the TCGA-PAAD Wild-type and 100 for the TCGA-PAAD Mutant TP53 cohorts. The results 

also indicated that 92 genes are significant concordant predictors between cohorts. Table 4.3 

summarizes the results on the top-ranked predictors, with their frequency of appearance and 

the associated p-value. The top-ranked distinctive predictors were then used to build the 

network inference for the TCGA-PAAD-MissenseTP53 cohort, using patient samples with 

TP53 Missense mutations (n = 63). A matrix of ((135x(135-1))17822) was generated from this 

analysis; the results were filtered out by taking the average of 10 repeats, then driver analysis 

was performed using the method described previously. Rank order was then applied according 

to the sum of the average values; the genes that got the highest sum of average values 

appeared at the top of the list, and so on.  

The results of the top-100 interactions are presented as a Cytoscape image in Figure 4.7, 

showing (CDK6, PPM1D, CDKN2A, and IGFBP3) as major hub nodes for the TCGA-

PAADMissenseTP53 cohort. CDKN2A appears as the main subnetwork with 13 interactions 

with genes unrelated to the pathway and 15 interactions with known pathway members, 

including CCNE1 and TNFRSF10B. CDKN2A protein is highly expressed in the Missense 

compared to the Wild-type cohort based on the cBioPortal result.  

Table 4.3: Top-ranked predictors obtained using Stepwise ANN approach. Shows top-

ranked predictors with frequency of gene appearance among all TP53 pathway members 

for the TCGA-PAAD (Mutant- and Wild-type TP53 cohorts. 

Concordant predictors 
for 

both cohorts 

Distinctive predictors for the TCGA-
PAAD Mutant TP53 

Distinctive predictors for the TCGA-PAAD 
Wildtype TP53 

Gene 
Symbol 

P-value Gene 
Symbol 

Frequency P-value Gene Symbol Frequency P-value 

E2F1  0.0047 

3  

EBF1  8  0.0286 

2  

S100A16  12  8.69E-05  

KIAA01 
01  

0.0002 

5  

KIF18B  8  0.0003 

3  

EFNA4  9  0.00047  

ORC6L  6.17E- 

05  

OIP5  8  1.45E- 

06  

OSBPL3  9  8.79E-05  

REV3L  0.0094 

4  

SPAG5  8  0.0014 

2  

S100A11  9  1.45E-05  
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Table 4.3: Top-ranked predictors obtained using Stepwise ANN approach. Shows top-

ranked predictors with frequency of gene appearance among all TP53 pathway members 

for the TCGA-PAAD (Mutant- and Wild-type TP53 cohorts. 

Concordant predictors 
for 

both cohorts 

Distinctive predictors for the TCGA-
PAAD Mutant TP53 

Distinctive predictors for the TCGA-PAAD 
Wildtype TP53 

Gene 
Symbol 

P-value Gene 
Symbol 

Frequency P-value Gene Symbol Frequency P-value 

TPX2  1.92E- 

05  

BUB1  7  5.42E- 

05  

TMEM92  9  0.00018  

ZWINT  7.26E- 

05  

C1orf13 5  7  1.11E- 

05  

ALPK1  8  0.01252  

CDC20  0.0005 

0  

CDK1  7  1.62E- 

05  

ANXA11  8  0.00018  

CDC45  0.0031  CDKN3  7  0.0032  C19orf33  8  3.51E-05  

CDC6  0.0010  CENPN  7  0.0055 

2  

FNDC3A  8  0.00057  

FAM72 

B  

0.0001  DTYMK  7  0.0004 

1  

KLF5  8  0.00359  

ITGB4  0.0003  FAM72D  7  0.0001 

7  

PLEK2  8  4.55E-06  

MYBL2  0.0001  FAM83H  7  0.0003 

5  

S100A6  8  0.00033  

UBE2C  1.6E- 

05  

GTSE1  7  0.0068 

5  

TRIM16  8  0.00413  

ANLN  1.22E- 

0  

MAD2L1  7  0.0021 

0  

ATP2B1  7  0.00073  

ASF1B  0.0003  MCM10  7  4.33E- 

05  

C6orf132  7  0.00070  

AURKA  0.0011  MCM4  7  0.0012 

2  

CARD6  7  0.03451  

AURKB  0.0360  PKMYT1  7  0.0005 

5  

CMTM7  7  0.00020  

BIRC5  0.0016  POLQ  7  0.0021 

3  

DEPDC1B  7  0.02724  

C17orf5 3  0.0008  RACGA 7  0.0018 E2F8  7  0.00232  
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Table 4.3: Top-ranked predictors obtained using Stepwise ANN approach. Shows top-

ranked predictors with frequency of gene appearance among all TP53 pathway members 

for the TCGA-PAAD (Mutant- and Wild-type TP53 cohorts. 

Concordant predictors 
for 

both cohorts 

Distinctive predictors for the TCGA-
PAAD Mutant TP53 

Distinctive predictors for the TCGA-PAAD 
Wildtype TP53 

Gene 
Symbol 

P-value Gene 
Symbol 

Frequency P-value Gene Symbol Frequency P-value 

P1  9  

DTL  0.0094  SMAD5  7  0.0011 

8  

ECT2  7  0.00031  

EPR1  0.0011  SOCS2  7  8.27E- 

06  

ERBB2  7  8.99E-05  

EXO1  0.0044  TACC3  7  0.0118 

8  

FHL2  7  0.00031  

HJURP  2.25E- 

0  

TNRC6C  7  1.75E- 

05  

FRRS1  7  0.00314  

KIF15  0.0002  UBE2T  7  0.0032 

4  

GBP2  7  0.0015  
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Figure 4.7: Cytoscape image for the TCGA-PAAD-MissenseTP53 cohort 

The blue nodes indicate known TP53 targets, and the red nodes indicate new candidates.  

The blue lines indicate positive interactions, and the red lines indicate negative interactions. Line 

thickness indicates interaction strength. Hub nodes are those with more than 5 interactions.  
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Figure 4.8: TCGA-PAAD-MissenseTP53-CDKN2A subnetwork  

Contains 15 interactions with known pathway members and 13 interactions with genes not 

belonging to the pathway. 

 

Figure 4.9: Expression of CDKN2A gene in cBioPortal  

The gene is more highly expressed in the TCGA-PAAD-MissenseTP53 cohort compared to 

the TCGA-PAAD Wild-type TP53 cohort  

Source: cBioPortal 

Missense TP53 Wild-Type TP53 
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Graphs representing the differential drivers (as targets and sources) for the TCGA-

PAADMissenseTP53 cohort were made for each group based on the method described 

previously. Figure 4.10 shows differential drivers (as targets); 48 out of 90 got total positive 

interactions, including POLE2, UBE2T, FANCA, POLQ, and PLK4, which appeared as the top 

targets. The remaining 42 have a general negative influence. Figure 4.11 indicates differential 

drivers (as sources), showing that 43 out of 90 had positive interactions, 10 of which are known 

pathway members. The remaining 47 have a general negative influence; 23 of them are known 

pathway members. 

 

Figure 4.10: Differential drivers (as targets) associated with the TCGA-PAAD-MissenseTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 pathway 

members, and red colour indicates novel targets 
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Figure 4.11: Differential drivers (as sources) associated with the TCGA-PAADMissenseTP53  

Sorted based on the average of interactions. Blue colour indicates known TP53 pathway 

members, and red colour indicates novel sources. 

MetaCore Interactome analysis was also done for this set, and the results indicate nine 

significant network objects (C15orf42, CENPN, E2F7, FANCD2, GTSE1, MCM10, MCM2, 

MCM4 and SPAG5) which appeared among the top differential sources in ANN driver analysis 

results. Microchromosome maintenance (MCM) proteins, a group of nuclear proteins that play 

important roles in cancer development by impacting cellular DNA replication. MCM10 is 

essential for preserving and elongating DNA replication and it is notably overproduced in 
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various cancer tissues, thereby regulating the biological behaviour of cancer cells. MCM10 

has been proposed as a predictive and diagnostic biomarker for immunomodulation as well 

as a possible target for tumour therapy (Chen et al., 2023). Moreover, eight corresponding 

significant objects (CDK1, CDK2, CDK6, Cycline B, FANCA, GADD45A, RRM2B, and TANK) 

appeared among the top target drivers in the ANN driver analysis outcomes. Table 4.4 

highlighting the relevance and interconnectedness of these key molecular players in the 

context of this cohort. 
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Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

Orange colour indicates novel inputs and blue colour indicates known TP53 pathway members. Orange colour indicates novel inputs and blue colour indicates known TP53 pathway 
members 

C15orf42  TOPBP1 interacting 
checkpoint and replication 
regulator  

CDK1  CDK1 (p34)  BAX  Bax  CDK1 (p34)  Cyclin dependent 
kinase 1  

C15orf42  TOPBP1 interacting 
checkpoint and replication 
regulator  

CDK2  CDK2  BCL2  Bcl-2  CDK1 (p34)  Cyclin dependent 
kinase 1  

C15orf42  TOPBP1 interacting 
checkpoint and replication 
regulator  

CHEK1  Chk1  BCL2L1  Bcl-XL  CDK1 (p34)  Cyclin dependent 
kinase 1  

C15orf42  TOPBP1 interacting 
checkpoint and replication 
regulator  

ZFX  ZFX  BRCA1  Brca1  CDK1 (p34)  Cyclin dependent 
kinase 1  

CENPN  centromere protein N  CENPI  CENP-I (FSHPRH1)  BUB1  BUB1  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  CCNB1  Cyclin B1  C15orf42  Treslin  CDK1 (p34)  Cyclin dependent 
kinase 1  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=85
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=85
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=91
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=91
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-149645761
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-149645761
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-149645761
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-149645761
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1514615890
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1514615890
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-668466568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-668466568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
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Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

E2F7  E2F transcription factor 7  CCNE1  Cyclin E  CCNB1  Cyclin B1  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  CDK1  CDK1 (p34)  CHAF1B  ChAF1 subunit B  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  CDK2  CDK2  CHEK2  Chk2  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  CDKN1A  p21  E2F7  E2F7  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  CHAF1B  ChAF1 subunit B  FANCA  FANCA  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  CHEK1  Chk1  MCM2  MCM7  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  MAD2L1  MAD2a  MCM2  MCM2  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  MCM2  MCM7  MCM4  MCM4  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  MCM2  MCM2  NCAPD3  NCAPD3  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  MCM4  MCM4  OGFR  OGFR  CDK1 (p34)  Cyclin dependent 
kinase 1  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=931
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=931
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1616056719
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1616056719
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1234157537
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1234157537
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1915971747
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1915971747
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1616056719
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1616056719
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-198598829
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-198598829
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-585873933
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-585873933
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-73098979
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-73098979
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-585873933
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-585873933
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-364222907
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-364222907
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-891498952
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-891498952
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-364222907
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-364222907
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1178310380
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1178310380
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133


 

107 

Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

E2F7  E2F transcription factor 7  MLF1IP  CENP-50  PRC1  PRC1  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  PRC1  PRC1  SERPINB5  Maspin  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  RAD51  Rad51  SFN  14-3-3 sigma  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  SERPINE1  PAI1  SPAG5  DEEPEST  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  TOP2A  TOP2 alpha  TOP2A  TOP2 alpha  CDK1 (p34)  Cyclin dependent 
kinase 1  

E2F7  E2F transcription factor 7  TP53  p53  ATP5F1  ATP5F1  CDK2  Cyclin dependent 
kinase 2  

E2F7  E2F transcription factor 7  UBE2T  UBE2T  BCL2  Bcl-2  CDK2  Cyclin dependent 
kinase 2  

FANCD2  FA complementation group D2  CHEK1  Chk1  BRCA1  Brca1  CDK2  Cyclin dependent 
kinase 2  

GTSE1  G2 and S-phase expressed 1  CDKN1A  p21  CBX7  CBX7  CDK2  Cyclin dependent 
kinase 2  

GTSE1  G2 and S-phase expressed 1  DDB2  DDB2  CCNB1  Cyclin B1  CDK2  Cyclin dependent 
kinase 2  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1113890408
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1113890408
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1113890408
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1113890408
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1439641531
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1439641531
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1439641531
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1439641531
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-816429491
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-816429491
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1631606110
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1631606110
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1375546139
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1375546139
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1353953593
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1353953593
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1761859047
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1761859047
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=91
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=91
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1186957469
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1186957469
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6240
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6240
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
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Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

GTSE1  G2 and S-phase expressed 1  TACC3  TACC3  CCNE1  LMW-CCNE1  CDK2  Cyclin dependent 
kinase 2  

GTSE1  G2 and S-phase expressed 1  TP53  p53  CDK1  CDK1 (p34)  CDK2  Cyclin dependent 
kinase 2  

MCM10  minichromosome maintenance 
10 replication initiation factor  

CDK6  CDK6  CHAF1B  ChAF1 subunit B  CDK2  Cyclin dependent 
kinase 2  

MCM10  minichromosome maintenance 
10 replication initiation factor  

CDKN1A  p21  E2F7  E2F7  CDK2  Cyclin dependent 
kinase 2  

MCM10  minichromosome maintenance 
10 replication initiation factor  

MCM2  MCM7  KIAA0101  p15(PAF)  CDK2  Cyclin dependent 
kinase 2  

MCM10  minichromosome maintenance 
10 replication initiation factor  

MCM2  MCM2  MCM2  MCM7  CDK2  Cyclin dependent 
kinase 2  

MCM10  minichromosome maintenance 
10 replication initiation factor  

MCM4  MCM4  MCM2  MCM2  CDK2  Cyclin dependent 
kinase 2  

MCM2  minichromosome maintenance 
complex component 2  

ATM  ATM  MCM4  MCM4  CDK2  Cyclin dependent 
kinase 2  

MCM2  minichromosome maintenance 
complex component 2  

ATR  ATR  PRC1  PRC1  CDK2  Cyclin dependent 
kinase 2  

MCM2  minichromosome maintenance 
complex component 2  

ATR  ATR  PSAT1  PSAT  CDK2  Cyclin dependent 
kinase 2  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-31944153
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-31944153
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1496894341
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1496894341
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1496894341
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1496894341
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=185
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=185
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1616056719
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1616056719
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1915971747
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1915971747
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-585873933
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-585873933
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
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Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

MCM2  minichromosome maintenance 
complex component 2  

CCNB1  Cyclin B1  SFN  14-3-3 sigma  CDK2  Cyclin dependent 
kinase 2  

MCM2  minichromosome maintenance 
complex component 7  

CCNE1  Cyclin E  SMC4  CAP-C  CDK2  Cyclin dependent 
kinase 2  

MCM2  minichromosome maintenance 
complex component 2  

CCNE1  Cyclin E  BCL2  Bcl-2  CDK6  Cyclin dependent 
kinase 6  

MCM2  minichromosome maintenance 
complex component 2  

CDK1  CDK1 (p34)  CDKN2A  p14ARF  CDK6  Cyclin dependent 
kinase 6  

MCM2  minichromosome maintenance 
complex component 2  

CDK1  CDK1 (p34)  MCM10  MCM10  CDK6  Cyclin dependent 
kinase 6  

MCM2  minichromosome maintenance 
complex component 2  

CDK2  CDK2  MCM2  MCM2  CDK6  Cyclin dependent 
kinase 6  

MCM2  minichromosome maintenance 
complex component 2  

CDK2  CDK2  RCHY1  PIRH2  CDK6  Cyclin dependent 
kinase 6  

MCM2  minichromosome maintenance 
complex component 2  

CDK6  CDK6  SETD1A  SET1A  CDK6  Cyclin dependent 
kinase 6  

MCM2  minichromosome maintenance 
complex component 2  

CDKN1A  p21  E2F7  E2F7  Cyclin B1  Cyclin B1  

MCM2  minichromosome maintenance 
complex component 2  

CHEK1  Chk1  KIAA0101  p15(PAF)  Cyclin B1  Cyclin B1  
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Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

MCM2  minichromosome maintenance 
complex component 2  

CHEK1  Chk1  MCM2  MCM7  Cyclin B1  Cyclin B1  

MCM2  minichromosome maintenance 
complex component 2  

DDB2  DDB2  FANCB  FANCB  FANCA  FA complementation 
group A  

MCM2  minichromosome maintenance 
complex component 2  

FANCD2  FANCD2  BRCA1  Brca1  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM2  minichromosome maintenance 
complex component 2  

FANCD2  FANCD2  CCNB1  Cyclin B1  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM2  minichromosome maintenance 
complex component 2  

MCM2  MCM2  CDK1  CDK1 (p34)  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM2  minichromosome maintenance 
complex component 2  

MCM4  MCM4  FAS  FasR(CD95)  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM2  minichromosome maintenance 
complex component 2  

PGR  PR (nuclear)  GADD45B  GADD45 beta  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM2  minichromosome maintenance 
complex component 2  

RAD51  Rad51  MDM2  MDM2  GADD45 alpha  Growth arrest and DNA 
damage  
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Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

inducible alpha  

MCM2  minichromosome maintenance 
complex component 7  

TP53  p53  SETD1A  SET1A  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM4  minichromosome maintenance 
complex component 4  

CASP8  Caspase-8  TP53  p53  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM4  minichromosome maintenance 
complex component 4  

CDK1  CDK1 (p34)  TP73  p73  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM4  minichromosome maintenance 
complex component 4  

CDK2  CDK2  ZFX  ZFX  GADD45 alpha  Growth arrest and DNA 
damage  

inducible alpha  

MCM4  minichromosome maintenance 
complex component 4  

FANCD2  FANCD2  ATM  ATM  RRM2B  Ribonucleotide 
reductase regulatory 
TP53 inducible subunit 
M2B  

MCM4  minichromosome maintenance 
complex component 4  

MCM2  MCM2  BCL2  Bcl-2  RRM2B  Ribonucleotide 
reductase regulatory 
TP53 inducible subunit 
M2B  
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Table 4.4: MetaCore Interactome results for the most significant interaction for the TCGA-PAAD-MissenseTP53 cohort matching ANN driver 

analysis results. 

Input IDs  Network object name  Input IDs for 
corresponding 
object name  

Corresponding network 
object name  

Input IDs  Network object name  Corresponding 
network object 
name  

Input IDs for 
corresponding object 
name  

MCM4  minichromosome maintenance 
complex component 4  

TP53  p53  MDM2  MDM2  RRM2B  Ribonucleotide 
reductase regulatory 
TP53 inducible subunit 
M2B  

MCM4  minichromosome maintenance 
complex component 4  

ZFX  ZFX  TP53  p53  RRM2B  Ribonucleotide 
reductase regulatory 
TP53 inducible subunit 
M2B  

SPAG5  sperm associated antigen 5  ATM  ATM  ZFX  ZFX  RRM2B  Ribonucleotide 
reductase regulatory 
TP53 inducible subunit 
M2B  

SPAG5  sperm associated antigen 5  CDK1  CDK1 (p34)  CASP3  Caspase-3  TANK  TRAF family member 
associated NFKB 
activator  

SPAG5  sperm associated antigen 5  PLK4  PLK4 (STK18)  CASP8  Caspase-8  TANK  TRAF family member 
associated NFKB 
activator  

SPAG5  sperm associated antigen 5  ZFX  ZFX  SETD1A  SET1A  TANK  TRAF family member 
associated NFKB 
activator  
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4.5.3. Analysis of TCGA-STAD Cohort 

The methods described previously (in sections 4.5.1 and 4.5.2) were used for the analysis of 

this cohort. The results showed a total of 377 distinctive significant predictors for the 

TCGASTAD Wild-type TP53 cohort; 241 distinctive significant predictors for the TCGA-STAD 

Mutant TP53 cohort; and 47 significant concordant predictors between the two cohorts. Table 

4.5 summarizes the results of the top-ranked predictors, with frequency of occurrence and 

associated P-values for both cohorts. The top-ranked predictors were used to build the 

interaction network for the TCGA-STAD- MissenseTP53 cohort, which contains 123 samples 

with TP53 Missense mutations. This analysis produces a matrix of ((123x(123-1))111222). The 

average of interaction and driver analysis was performed using the method described in 

Chapter 3. Genes were then ordered based on the highest sum of the average values.  

The results of the top-100 interactions are presented as a Cytoscape image in Figure 4.12, 

showing CDKN2A, MDM2, PMAIP1, BCL2L1, ZMAT5, SF3B1, and CDKN1A as major hub 

nodes for the TCGA-STAD-MissenseTP53 cohort. CDKN2A appeared as the main 

subnetwork, with nine interactions with genes not related to the pathway, and five interactions 

with known pathway members, including CCNE1, TP73, PMAIP1, CASP9, and GORAB. 

cBioPortal results also indicated higher CDKN2A protein expression in the Missense 

compared to the Wild-type cohort.  

Table 4.5: Top-ranked predictors with frequency of gene appearance among all TP53 

pathway members for the TCGA-STAD (Mutant- and Wild-type TP53 cohorts) 

Concordant predictors for 
Both cohorts 

Distinctive predictors for TCGA-STAD 
Mutant TP53 

Distinctive predictors for the TCGA-STAD Wild 
TP53 

Gene 
Symbol 

P-value Gene 
Symbol 

Frequency P-value Gene Symbol Frequency P-value 

BUB1  1.3425E- 

51  

EXO1  9  3.5567E- 

06  

SNORD115- 

17  

19  4.6176
E- 

39  

CDCA8  7.7448E- 

50  

CCNA2  8  3.0602E- 

12  

BARX1  17  5.4463
E- 

16  

CDCA3  4.1505E- 

41  

CENPA  8  3.9839E- 

09  

MUC13  16  2.7321
E- 

47  

POLE2  1.0669E- 

49  

DSCC1  8  3.6864E- 

33  

TUBG2  16  9.6025
E- 

43  
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Table 4.5: Top-ranked predictors with frequency of gene appearance among all TP53 

pathway members for the TCGA-STAD (Mutant- and Wild-type TP53 cohorts) 

Concordant predictors for 
Both cohorts 

Distinctive predictors for TCGA-STAD 
Mutant TP53 

Distinctive predictors for the TCGA-STAD Wild 
TP53 

Gene 
Symbol 

P-value Gene 
Symbol 

Frequency P-value Gene Symbol Frequency P-value 

CENPF  1.818E-58  DTL  8  1.2968E- 

17  

ADCY8  15  6.0706
E- 

41  

FOXM1  5.1384E- 

43  

ERCC6L  8  1.074E-
43  

FERMT1  14  3.7921
E- 

38  

FAM54A  1.5191E- 

49  

KIF18B  8  5.2841E- 

06  

SNORD115- 

41  

13  3.1906
E- 

46  

CDCA2  6.0297E- 

33  

MAD2L1  8  1.5134E- 

10  

FLJ42393  13  1.3841
E- 

45  

CASC5  4.1383E- 

50  

ORC1L  8  2.003E-
36  

CNPY2  13  7.1919
E- 

42  

C12orf48  6.8986E- 

45  

PRIM1  8  4.4905E- 

13  

GRINA  13  1.035E-
40  

BUB1B  1.3428E- 

50  

RFC3  8  0.004187
9 

1  

TRIM15  12  8.3554
E- 

47  

NCAPH  3.4128E- 

46  

RNF150  8  0.019267
9 

2  

TCEA2  12  4.5471
E- 

45  

RRM2  4.1269E- 

35  

SPAG5  8  3.2241E- 

15  

SNORD29  12  1.8176
E- 

33  

UBE2C  4.0639E- 

62  

TRIP13  8  2.3199E- 

10  

LPP  12  1.5986
E- 

32  

CCNF  3.7804E- 

23  

TROAP  8  6.0609E- 

05  

SNORA36C  12  2.1564
E- 

13  

NCAPG  4.0629E- 

48  

AHCTF1  7  7.4581E- 

17  

ZNF559  11  4.8751
E- 
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Table 4.5: Top-ranked predictors with frequency of gene appearance among all TP53 

pathway members for the TCGA-STAD (Mutant- and Wild-type TP53 cohorts) 

Concordant predictors for 
Both cohorts 

Distinctive predictors for TCGA-STAD 
Mutant TP53 

Distinctive predictors for the TCGA-STAD Wild 
TP53 

Gene 
Symbol 

P-value Gene 
Symbol 

Frequency P-value Gene Symbol Frequency P-value 

46  

CDC25C  2.2008E- 

29  

ATP8B2  7  1.3856E- 

15  

ESRP1  11  1.0525
E- 

45  

SKA1  2.3217E- 

34  

AURKA  7  0.000260
9 

5  

FA2H  11  2.0893
E- 

45  

CDC20  1.1016E- 

40  

C10orf72  7  0.0004617 

3  

TRIM31  11  4.3576E- 

43  

CDCA5  2.4148E- 

31  

C11orf82  7  1.5658E- 

06  

VEGFB  11  1.0008E- 

39  

FBN1  2.8004E- 

11  

C1orf112  7  5.4377E- 

06  

GPR35  11  1.5679E- 

39  

GSG2  6.5295E- 

41  

C21orf45  7  1.9437E- 

19  

AGR2  11  1.0475E- 

30  

NEK2  1.6142E- 

36  

CCNB2  7  1.7886E- 

15  

FBLL1  11  1.967E-
30  

PRR11  1.8375E- 

44  

CDC25A  7  7.3221E- 

30  

BNIPL  11  4.7807E- 

11  

Source:  

CENPO  

5.2289E- 

44  

CDC45  7  2.743E-23  CLSPN  10  6.4374E- 

47  
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Figure 4.12: Cytoscape image for the TCGA-STAD-MissenseTP53 cohort  

The blue nodes indicate known TP53 targets, and the red nodes indicate new candidates. 

The blue lines indicate positive interactions, and the red lines indicate negative interactions. 

Line thickness indicates interaction strength. Hub nodes are those with more than 5 

interactions 
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Figure 4.13: TCGA-STAD-MissenseTP53-CDKN2A subnetwork  

Contains 5 interactions with known pathway members and 9 interactions with genes not 

belonging to the pathway 

 

Figure 4.14: Expression of CDKN2A gene in cBioPortal  

The gene is more highly expressed in the TCGA-STAD-MissenseTP53 cohort compared to 

the TCGA-STAD WTTP53 cohort 

Source: cBioPortal 

Graphs that represent the differential drivers as targets and sources were made based on the 

methods described previously. Figure 4.14 represents differential drivers as targets for the 

Missense 
TP53 

Wild-Type TP53 
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TCGA-STAD-MissenseTP53 cohort. 17 out of 27 show positive interactions, among them 

(CDKN2A, ZNF638, PMAIP1, MDM2, and FBXN2) which appeared as top targets. The 

remaining 10 show negative interactions. Figure 4.15 indicates differential drivers as sources 

for the same cohort. 38 out of 72 with positive interaction, among them (FOXN2, USP34, 

NUP107, FBXO11, and CAND1), which appeared as top sources. The remaining 34 have a 

general negative influence. 

 

Figure 4.15: Differential drivers (as targets) associated with the TCGA-STAD-MissenseTP53   

Sorted based on the total average of interactions. Blue colour indicates known TP53 

pathway members, and red colour indicates novel targets  
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Figure 4.16: Differential drivers (As sources) associated with the TCGA-STAD-MissenseTP53  

Sorted based on the average of interactions. Blue colour indicates known TP53 pathway 

members, and red colour indicates novel sources. 

MetaCore Interactome analysis for this set indicates 13 significant network objects, which also 

appeared among the top differential sources in the ANN driver analysis result (CAND1, 

CCNE1, CCNT2, ERCC6L, FOSL1, FOXN2, GADD45A, NUP107, RFC5, RFWD2, TPRKB, 

XPO1, and ZC3H11A). And 12 corresponding significant objects (APAF1, CDKN2A, GORAB, 

LRDD, MDM2, PBK, PMAIP1, RAN, SF3B1, TP73, ZNF638) which also appeared among the 

top differential targets in ANN driver analysis. Table 4.6 presents the MetaCore result for this 

set.   
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

Orange colour indicates novel inputs and blue colour indicates known TP53 pathway members.  

CAND1  cullin associated 
and neddylation 
dissociated 1  

BLM  BLM  CDC6  CDC18L (CDC6)  APAF1  apoptotic peptidase activating factor 1  

CAND1  cullin associated 
and neddylation 
dissociated 1  

CCNB1  Cyclin B1  CSE1L  CSE1L  APAF1  apoptotic peptidase activating factor 1  

CAND1  cullin associated 
and neddylation 
dissociated 1  

CDK2  CDK2  NUP107  NUP107  APAF1  apoptotic peptidase activating factor 1  

CAND1  cullin associated 
and neddylation 
dissociated 1  

FGFR1  FGFR1  CBX7  CBX7  CDKN2A  cyclin dependent kinase inhibitor 2A  

CAND1  cullin associated 
and neddylation 
dissociated 1  

MCM2  MCM2  CDC45  CDC45L  CDKN2A  cyclin dependent kinase inhibitor 2A  

CAND1  cullin associated 
and neddylation 
dissociated 1  

SF3B1  SF3B2  DHX9  DDX9  CDKN2A  cyclin dependent kinase inhibitor 2A  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2500
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2500
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-232249755
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-232249755
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-232249755
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-232249755
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-232249755
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-232249755
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-54946299
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-54946299
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1368191291
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1368191291
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1186957469
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1186957469
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-53830653
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-846114585
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-846114585
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-309524817
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-309524817
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652207152
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652207152
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

CAND1  cullin associated 
and neddylation 
dissociated 1  

TNRC6C  Tnrc6c  EZH2  EZH2  CDKN2A  cyclin dependent kinase inhibitor 2A  

CAND1  cullin associated 
and neddylation 
dissociated 1  

ZEB1  TCF8  MYSM1  MYSM1  CDKN2A  cyclin dependent kinase inhibitor 2A  

CCNE1  cyclin E1  BLM  BLM  RUNX1T1  ETO  CDKN2A  cyclin dependent kinase inhibitor 2A  

CCNE1  cyclin E1  CDC25A  CDC25A  SUV39H2  SUV39H2  CDKN2A  cyclin dependent kinase inhibitor 2A  

CCNE1  cyclin E1  CDC25C  CDC25C  UHRF1  UHRF1  CDKN2A  cyclin dependent kinase inhibitor 2A  

CCNE1  cyclin E1  CDKN1A  p21  RCHY1  PIRH2  GORAB  golgin, RAB6 interacting  

CCNE1  cyclin E1  E2F1  E2F1  FANCI  FANCI  

(KIAA1794)  

LRDD  P53-Induced Death Domain Protein 1  

CCNE1  cyclin E1  FEN1  FEN1  RFC5  RFC5  LRDD  P53-Induced Death Domain Protein 1  

CCNE1  cyclin E1  FOXM1  FOXM1  ATM  ATM  MDM2  MDM2 proto-oncogene  

CCNE1  cyclin E1  MYBL2  b-Myb  AURKA  Aurora-A  MDM2  MDM2 proto-oncogene  

CCNE1  cyclin E1  ORC1L  ORC1L  BCL2  Bcl-2  MDM2  MDM2 proto-oncogene  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-100124462
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-100124462
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4386
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4386
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2138034400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2138034400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2500
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2500
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1139112639
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1139112639
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6056
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6056
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1299215096
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1299215096
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6236
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6236
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1816379097
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1816379097
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1065
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1351584468
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1351584468
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-815235401
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-815235401
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-815235401
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-815235401
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-815235401
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-815235401
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2555
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2555
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1816695197
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1816695197
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6059
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6059
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=52
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=52
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4355
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4355
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4355
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4355
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2076917160
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2076917160
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2076917160
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2076917160
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4460
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4460
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

CCNE1  cyclin E1  PTEN  PTEN  BCL2L1  Bcl-XL  MDM2  MDM2 proto-oncogene  

CCNT2  cyclin T2  E2F1  E2F1  BID  Bid  MDM2  MDM2 proto-oncogene  

ERCC6L  ERCC excision 
repair  

6 like, spindle 
assembly 
checkpoint 
helicase  

BLM  BLM  CDK2  CDK2  MDM2  MDM2 proto-oncogene  

ERCC6L  ERCC excision 
repair  

6 like, spindle 
assembly 
checkpoint 
helicase  

CHEK1  Chk1  CDK4  CDK4  MDM2  MDM2 proto-oncogene  

ERCC6L  ERCC excision 
repair  

6 like, spindle 
assembly 
checkpoint 
helicase  

E2F1  E2F1  CDKN2A  p14ARF  MDM2  MDM2 proto-oncogene  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2032
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2032
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=88
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=88
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2500
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2500
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=135
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=135
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-694975657
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-694975657
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

ERCC6L  ERCC excision 
repair  

6 like, spindle 
assembly 
checkpoint 
helicase  

GLI3  GLI-3  CDS1; CHEK2  Chk2  MDM2  MDM2 proto-oncogene  

ERCC6L  ERCC excision 
repair  

6 like, spindle 
assembly 
checkpoint 
helicase  

TOP2A  TOP2 alpha  DHX9  DDX9  MDM2  MDM2 proto-oncogene  

FOSL1  FOS like 1, AP-1 
transcription factor 
subunit  

CCND1  Cyclin D1  DTL  DTL (hCdt2)  MDM2  MDM2 proto-oncogene  

FOSL1  FOS like 1, AP-1 
transcription factor 
subunit  

FEN1  FEN1  EZH2  EZH2  MDM2  MDM2 proto-oncogene  

FOSL1  FOS like 1, AP-1 
transcription factor 
subunit  

ITGA2  ITGA2  FGFR1  FGFR1  MDM2  MDM2 proto-oncogene  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6094
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6094
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6094
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6094
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1234157537
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1234157537
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-800418262
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652207152
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652207152
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-199009568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-199009568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-199009568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-199009568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-199009568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-199009568
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2555
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2555
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4522
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4522
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

FOSL1  FOS like 1, AP-1 
transcription factor 
subunit  

ZEB1  TCF8  MPDZ  MPDZ  MDM2  MDM2 proto-oncogene  

FOXN2  forkhead box N2  E2F1  E2F1  PBXIP1  PBXIP1  MDM2  MDM2 proto-oncogene  

FOXN2  forkhead box N2  FGFR1  FGFR1  PRC1  PRC1  MDM2  MDM2 proto-oncogene  

FOXN2  forkhead box N2  SETD1A  SET1A  PSAT1  PSAT  MDM2  MDM2 proto-oncogene  

FOXN2  forkhead box N2  ZEB1  TCF8  SETD1A  SET1A  MDM2  MDM2 proto-oncogene  

GADD45 

A  

growth arrest and 
DNA damage  

inducible alpha  

GADD45G  GADD45 gamma  SFN  14-3-3 sigma  MDM2  MDM2 proto-oncogene  

NUP107  nucleoporin 107  AHCTF1  ELYS  TNFRSF10B  DR5(TNFRSF10B 

)  

MDM2  MDM2 proto-oncogene  

NUP107  nucleoporin 107  APAF1  Apaf-1  TP53  p53  

(mitochondrial)  

MDM2  MDM2 proto-oncogene  

NUP107  nucleoporin 107  CDK2  CDK2  TP73  P73 dN-Alpha  MDM2  MDM2 proto-oncogene  

NUP107  nucleoporin 107  CENPA  CENP-A  TPX2  TPX2  MDM2  MDM2 proto-oncogene  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4386
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4386
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1543991721
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1543991721
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-449579651
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-449579651
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1439641531
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1439641531
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-59010478
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-59010478
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4386
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4386
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6292
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6292
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6292
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6292
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1351680621
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1351680621
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=60
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=60
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=60
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=60
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2046669967
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2046669967
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2046669967
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2046669967
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2046669967
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-2046669967
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1096980226
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1096980226
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1096980226
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1096980226
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1096980226
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1096980226
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-798782238
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-798782238
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

NUP107  nucleoporin 107  CENPF  CENP-F  MPDZ  MPDZ  PBK  PDZ binding kinase  

NUP107  nucleoporin 107  FGFR1  FGFR1  BAX  Bax  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

NUP107  nucleoporin 107  RANBP2  RanBP2  BCL2  Bcl-2  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

NUP107  nucleoporin 107  TNS1  CARD5  BCL2L1  Bcl-XL  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

NUP107  nucleoporin 107  ZFX  ZFX  CSE1L  CSE1L  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

ATM  ATM  EZH2  EZH2  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

ATR  ATR  FGFR1  FGFR1  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

BLM  BLM  GFI1  GFI-1  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

CAND1  TIP120A  KPNA2  Karyopherin alpha  

2  

PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1236651847
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1236651847
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1236651847
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1236651847
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1543991721
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1543991721
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
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https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4013
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4013
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-54946299
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-54946299
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=52
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=52
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1110
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1110
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
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https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1986196734
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1986196734
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

RFC5  replication factor C 
subunit 5  

CCND1  Cyclin D1  MDM2  MDM2  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

DSCC1  DCC1  SETD1A  SET1A  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

E2F1  E2F1  TP53  p53  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

EXOSC8  RRP43  TP73  p73  PMAIP1  phorbol-12-myristate-13-acetate-induced 
protein 1  

RFC5  replication factor C 
subunit 5  

FGFR1  FGFR1  CDCA8  CDCA8  PPM1D  protein phosphatase, Mg2+/Mn2+ 
dependent 1D  

RFC5  replication factor C 
subunit 5  

LRDD  PIDD  CDS1; CHEK2  Chk2  PPM1D  protein phosphatase, Mg2+/Mn2+ 
dependent 1D  

RFC5  replication factor C 
subunit 5  

RFC3  RFC3  CDCA2  CDCA2  RAN  RAN, member RAS oncogene family  

RFC5  replication factor C 
subunit 5  

RIF1  BAIP3  CDK2  CDK2  RAN  RAN, member RAS oncogene family  

RFWD2  COP1 E3 
Ubiquitin Ligase  

MDM4  MDM4  CSE1L  CSE1L  RAN  RAN, member RAS oncogene family  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-530028745
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-530028745
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-792591390
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-792591390
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1076
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1076
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1831518519
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1831518519
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-742830672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-742830672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1234157537
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1234157537
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https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1494060452
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1494060452
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=134
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6233
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

TPRKB  TP53RK binding 
protein  

BIRC5  Survivin  DLGAP5  HURP  RAN  RAN, member RAS oncogene family  

TPRKB  TP53RK binding 
protein  

E2F1  E2F1  FANCA  FANCA  RAN  RAN, member RAS oncogene family  

TPRKB  TP53RK binding 
protein  

FGFR1  FGFR1  FGFR1  FGFR1  RAN  RAN, member RAS oncogene family  

TPRKB  TP53RK binding 
protein  

FGFR1  FGFR1  KIAA0101  p15(PAF)  RAN  RAN, member RAS oncogene family  

TPRKB  TP53RK binding 
protein  

MDM2  MDM2  TPX2  TPX2  RAN  RAN, member RAS oncogene family  

TPRKB  TP53RK binding 
protein  

PBK  PBK  XPO1  CRM1  RAN  RAN, member RAS oncogene family  

TPRKB  TP53RK binding 
protein  

TP53  p53  ZC3H11A  ZC3H11A  RAN  RAN, member RAS oncogene family  

TPRKB  TP53RK binding 
protein  

TPRKB  CGI-121  CENPA  CENP-A  SF3B1  splicing factor 3b subunit 1  

TPRKB  TP53RK binding 
protein  

ZFX  ZFX  EZH2  EZH2  SF3B1  splicing factor 3b subunit 1  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1142
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1142
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1783677332
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1783677332
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-198598829
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-198598829
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-798782238
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-798782238
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-841065332
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-841065332
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=165
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=165
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1974326327
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1974326327
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-858586853
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-858586853
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-858586853
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-858586853
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-756341948
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

XPO1  exportin 1  BIRC5  Survivin  GSG2  GSG2  SF3B1  splicing factor 3b subunit 1  

XPO1  exportin 1  CCND1  Cyclin D1  KIF11  KNSL1  SF3B1  splicing factor 3b subunit 1  

XPO1  exportin 1  CDC25A  CDC25A  SETD1A  SET1A  SF3B1  splicing factor 3b subunit 1  

XPO1  exportin 1  CHEK1  Chk1  ASPM  ASPM  TP73  tumor protein p73  

XPO1  exportin 1  FGFR1  FGFR1  BAX  Bax  TP73  tumor protein p73  

XPO1  exportin 1  MDM2  MDM2  BCL2  Bcl-2  TP73  tumor protein p73  

XPO1  exportin 1  ORC1L  ORC1L  BCL2L1  Bcl-XL  TP73  tumor protein p73  

XPO1  exportin 1  PTEN  PTEN  BUB1  BUB1  TP73  tumor protein p73  

XPO1  exportin 1  RAD51  Rad51  CCNB1  Cyclin B1  TP73  tumor protein p73  

XPO1  exportin 1  RAN  Ran  CDK1  CDK1 (p34)  TP73  tumor protein p73  

XPO1  exportin 1  RANBP2  RanBP2  CDK4  CDK4  TP73  tumor protein p73  

XPO1  exportin 1  TP53  p53  CDK6  CDK6  TP73  tumor protein p73  

XPO1  exportin 1  TP73  p73  MAD2L1  MAD2a  TP73  tumor protein p73  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1142
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1142
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1102790535
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1102790535
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6005
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1143766394
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1143766394
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6056
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6056
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-404472882
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=6254
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-770761717
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-770761717
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=85
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=85
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=86
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4460
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4460
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=87
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2032
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2032
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1514615890
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1514615890
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-145039663
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=676
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=676
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=677
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=677
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=135
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=135
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=185
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=185
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1076
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1076
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-73098979
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-73098979
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Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

XPO1  exportin 1  ZFX  ZFX  MDM2  MDM2  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

CCNF  Cyclin F  RAD51  Rad51  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

CDK1  CDK1 (p34)  RCHY1  PIRH2  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

E2F1  E2F1  SASS6  SASS6  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

FANCD2  FANCD2  SERPINE1  PAI1  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

FGFR1  FGFR1  SFN  14-3-3 sigma  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

KIAA0101  p15(PAF)  STAG1  STAG1  TP73  tumor protein p73  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=482
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1268399585
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1268399585
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1268399585
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1268399585
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=672
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=133
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1351584468
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1351584468
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4303
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1799109537
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1799109537
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2287
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=2287
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1631606110
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1631606110
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=261
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-401309399
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1652185400
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1901444999
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1901444999


 

130 

Table 4.6: MetaCore Interactome results for the most significant interaction of the TCGA-STAD-MissenseTP53 cohort matching ANN driver 

analysis results 

Input IDs Network object 
name 

Input IDs for 
correspondin g 

object name 

Corresponding 
network object 

name 

Input IDs Network object name Input IDs for 
correspondin g 

object name 

Corresponding network object name 

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

RAD54L  ATRX  TNFRSF10B  DR5(TNFRSF10B 

)  

TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

RAN  Ran  TP53  p53  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

SERPINB5  Maspin  TP53AIP1  P53AIP1  TP73  tumor protein p73  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

SGOL2  SGOL2  EZH2  EZH2  ZNF638  zinc finger protein 638  

ZC3H11 

A  

zinc finger 
CCCHtype 
containing 11A  

ZFX  ZFX  SF3B1  SF3B1  ZNF638  zinc finger protein 638  

Orange colour indicates novel inputs and blue colour indicates known TP53 pathway members.  

https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-487356338
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-487356338
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=207
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=676
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=676
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=1075
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-816429491
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-816429491
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1811514320
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1811514320
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1727266807
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1727266807
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1913977588
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=4239
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1919178236
https://portal.genego.com/cgi/entity_page.cgi?term=100&id=-1919178236
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4.5.4. Combined (three-project) analysis for MissenseTP53 differential drivers  

The differential source drivers associated with the TP53 pathway in the Missense TP53 status 

of the three projects (COADREAD-PAAD, and STAD) were combined to identify the common 

source drivers in the three cohorts (the TCGA-COADREAD-MissenseTP53, the TCGA-

PAADMissenseTP53, and the TCAG-STAD-MissenseTP53). The commonalities were 

calculated using R programme (https://www.R-project.org/). The results revealed five sources 

that are novel to the TP53 pathway, three of which (SGOL2, TRAIP, and TACC3) are common 

between the TCGA-PAAD-MissenseTP53 and the TCGA-CRC-MissenseTP53, and two of 

which (CCDC150 and ERCC6L) are common between the TCGA CRC-MissenseTP53 and 

the TCGA-STAD-MissenseTP53.  

A similar analysis was also done for the differential target drivers of the three projects. Three 

of the five common source drivers also appeared as common target drivers, which may reflect 

a homeostatic role of these drivers. Only one novel target driver (CHAF1B) appeared to be 

common between the TCGA-COADREAD-MissenseTP53 and the TCGA-STAD- 

MissenseTP53 cohorts. The chromatin assembly factor 1, subunit B (CHAF1B), plays an 

important role in chromatin assembly and DNA replication during proliferation. This protein is 

also involved in DNA repair, and it has been previously linked to cancer in previous research. 

A literature search for the terms “CHAF1B” and “cancer” revealed 17 publications, one of which 

revealed a prognostic ability of CHAF1B in gastric cancer (Ren et al., 2022). Another study 

suggested CHAF1B among the genes that have a unique association between their mRNA 

expression and their knockdown/ knockout efficacy in colon cancer cell lines (Jeong et al., 

2020). However, none of the previous publications relate CHAF1B to the Missense TP53 

mutation status in cancer, which indicates that this is a novel finding of the ANN data mining 

tools.  

The CHAF1B combined subnetwork is presented as a Cytoscape image in Figure 4.16. 

Further downstream analysis for more confirmation was also done using the Human Atlas 

Database to identify CHAF1B protein expression in colorectal and stomach cancers. The 

protein is highly expressed in 12 out of 12 colorectal cancer cases, and in 10 out of 12 stomach 

cancer cases. Figures 4.17 and 4.18 presents immune-stained stained slides for colorectal 

and stomach cancers, respectively, adapted from the Human Protein Atlas database (The 

Human Protein Atlas). Known TP53 pathway members also appeared among multiple cohorts, 

including FAS and CDK2, as common source drivers and CDKN2A as a common target driver.  

The results of the combined analysis are presented in Tables 4.7 and 4.8.  

https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Table 4.7: Combined driver analysis for the three cohorts (Sources) 

Influencer (Sources) 

Gene 
Symbol 

Gene Name Project Rank Sum of 
average 

ABS 

SGOL2  Shugoshin 2  COADREAD  8  -0.3777  0.3777  

    PAAD  24  35.6884  35.6884  

      

ERCC6L  ERCC Excision Repair 6 Like,  

Spindle Assembly Checkpoint  

Helicase  

COADREAD  30  -21.9703  21.9703  

    PAAD  10  7.8956  7.8956  

      

TACC3  

 

Transforming Acidic Coiled-Coil  

Containing Protein 3  

COADREAD  34  -23.3711  23.3711  

    PAAD  41  10.5254  10.5254  

      

CCDC15 

0  

Coiled-Coil Domain Containing 150  COADREAD  47  -31.7806  31.7806  

    STAD  28  6.2453  6.2453  

      

TRAIP  TRAF Interacting Protein  COADREAD  52  -35.7583  35.7583  

    PAAD  26  33.4327  33.4327  

      

FAS  Fas Cell Surface Death Receptor  COADREAD  40  -28.5661  28.5661  

    STAD  

 

25  

 

6.3965  

 

6.3965  

 

      

CDK2  Cyclin Dependent Kinase 2  PAAD  39  17.3323  17.3323  

  STAD  22  6.5087  6.5087  

Orange colour indicates novel sources and the blue colour indicates known pathway members  
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Table 4.8: Combined driver analysis for the three cohorts (Targets) 

Influenced by (Targets) 

Gene 
Symbol 

Gene Name Cohort Rank Sum of 
average 

ABS 

TACC3  Transforming Acidic Coiled-Coil 
Containing  

Protein 3  

COADREAD  19  -11.184  11. 

2  

    PAAD  66  

 

-40.204  

 

40. 

2  

      

SGOL2  

 

Shugoshin 2  COADREAD  68  -51.635  51. 

6  

    PAAD  

 

40  

 

14.124  

 

14. 

1  

      

TRAIP  

 

TRAF Interacting Protein  

 

COADREAD  79  -61.702  61. 

7  

    PAAD  

 

51  

 

-5.461  

 

5.4 

6  

            

      

CHAF1B  

 

Chromatin Assembly Factor 1 Subunit B  

 

COADREAD  78  -59.220  59. 

2  

    STAD  18  

 

-1.431  

 

1.4 

3  

      

CDKN2A  Cyclin Dependent Kinase Inhibitor 2A  COADREAD  29  -20.44    

   PAAD  9  102.85    

  STAD  1  65.51   

Orange colour indicates novel sources and the blue colour indicates known pathway members  
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Figure 4.17: CHAF1B combined subnetwork for the COADREAD and STAD cohorts 

Shows CHAF1B as a hub target, blue colour marks for known TP53 members, red colour for 

genes not belonging to the pathway, blue edge for positive interactions, and red for negative 

interactions. The figure shows 18 negative and 6 positive interactions with known pathway  

targets, and 3 negative and 13 positive negative interactions with non-pathway members  
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Positive Immunostaining 

 

Positive Immunostaining 

  

Negative Immunostaining 

 

Positive Immunostaining 

Figure 4.18:  Human Protein Atlas results for CHAF1B protein expression shows strong 

immunostaining in 10 out of 12 examined stomach cancer cases  

Source: adapted from Human Protein Atlas (Expression of CHAF1B in stomach cancer - The 

Human Protein Atlas) 

  

https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/stomach+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/stomach+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/stomach+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/stomach+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/stomach+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/stomach+cancer
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Figure 4.19: Human Protein Atlas results for CHAF1B protein expression shows strong 

immunostaining in 12 out of 12 examined colorectal cancer cases  

Source: adapted from Human Protein Atlas (Expression of CHAF1B in colorectal cancer - 

The Human Protein Atlas) 

4.6. Summary and conclusion  

In this chapter, ANN stepwise algorithm was used for the analysis of the TP53 pathway based 

on the mutation status of the TP53 gene. Data were obtained from three projects of the TCGA 

data (COADREAD, PAAD, and STAD). Two cohorts (Mutant- and Wild-type TP53) were 

identified and analysed for each project separately. The analysis spanned 64 known TP53 

https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/colorectal+cancer
https://www.proteinatlas.org/ENSG00000159259-CHAF1B/pathology/colorectal+cancer


 

137 

pathway members, each of which was considered as a separate ANN model, to identify genes 

that were most related to that member. The top-200 commonalities for all members were 

identified, then a comparative analysis was undertaken to identify common and distinctive 

predictors with significant differential expression between the Mutant- and the Wild-type TP53 

cohorts.  

The results showed 65 distinctive predictors associated with the TCGA-COADREAD Mutant 

TP53, 100 for the TCGA-PAAD Mutant TP53 cohorts, and 241 for the TCGA-STAD Mutant 

TP53 cohort. The distinctive predictors were then used to build the network of interaction using 

the ANNI algorithm, and driver analysis was applied to identify the differential drivers 

associated with the pathway in the MissenseTP53 mutation status for each project. 

Interactome analysis was performed using MetaCore platform. ANN driver results were then 

compared to MetaCore Interactome results for each project to identify the concordance 

between the two methods.  

4.6.1. TCGA-COADREAD-MissenseTP53 cohort  

4 genes that appeared as top differential source drivers also appeared as significant network 

objects (DUSP4, PHLDA1, KIF20A, TOP2A) in the MetaCore Interactome result. A similar 

number of top differential target drivers (GIFI1, CASP3, MAP3K3, DDB2) were also found as 

corresponding significant objects in MetaCore interaction results. A literature search suggest 

the these genes have been linked to Colorectal cancer except GIFI1 which has been known 

as a regulator for myeloid cell differentiation and proliferation and has been correlated with 

favourable prognosis in Acute myeloid leukaemia (Salarpour et al., 2020) however, no 

previous report linked GIFI1 with Colorectal cancer .  

4.6.2. TCGA-PAAD-MissenseTP53 cohort  

The MetaCore result indicated 9 significant network objects which also appeared among the 

top differential sources in ANN driver analysis result (C15orf42, CENPN, E2F7, FANCD2, 

GTSE1, MCM10, MCM2, MCM4 and SPAG5), and 8 significant corresponding  

MetaCore objects appeared among the top target drivers in the ANN driver analysis results 

(CDK1, CDK2, CDK6, CCMB1, FANCA, GADD45A, RRM2B, TANK).  

4.6.3. TCGA-STAD-MissenseTP53 cohort  

MetaCore Interactome analysis indicated 13 significant network objects which were also 

appeared among the top differential sources in the ANN driver analysis results (CAND1, 

CCNE1, CCNT2, ERCC6L, FOSL1, FOXN2, GADD45A, NUP107, RFC5, RFWD2, TPRKB, 

XPO1, ZC3H11A), and 12 significant corresponding MetaCore objects also appeared among 



 

138 

the top differential targets in ANN driver analysis (APAF1, CDKN2A, GORAB, LRDD, MDM2, 

PBK, PMAIP1, RAN, SF3B1, TP73, PPM1D, ZNF638).  

4.6.4. Combined analysis  

Combined analysis for the differential drivers of the three projects was done to identify 

common drivers between all sets. The results revealed two sources (CCDC150 and ERCC6L) 

that are common between the TCGA-COADREAD-MissenseTP53 and the TCGA-

STADMissenseTP53 and are novel to the TP53 pathway. A novel target driver (CHAF1B) 

appeared to be common between the TCGA-COADREAD-MissenseTP53 and the TCGA- 

STAD-MissenseTP53 cohorts. The CHAF1B protein is highly expressed in colorectal and 

stomach cancers based on the Human Protein Atlas results. Although it has been linked 

previously to poor outcome in gastric cancer, no previous association between CHAF1 and 

missense TP53 mutation status.  

Overall, this chapter provides more evidence for the practicality of using ANN data mining tools 

for pathway modelling. The concordance between the ANN and MetaCore results provides an 

extra layer of strength and gives more indication about the reliability of ANN results. The 

identification of significant predictors that are highly associated with the TP53 pathway in the 

mutant and the wild-type state of the TP53 gene also represents a strong point of the study 

since it shows that the pathway may be activated differently based on the TP53 mutation, the 

extension of the analysis to model the interaction and to recognise the potential drivers related 

to the pathway by considering the missense mutation status of the TP53 gene for each of the 

investigated projects also reflect a further benefit of the research. The combined analysis 

revealed some similarity between the examined cohorts and that could help in better 

understanding of the behaviour of the pathway in the missense mutation status of the TP53 

gene. However, more similarity might be yielded by considering more data related to other 

cancer types, this represent an area for improvement of the analysis. Also, the results were 

only focused on the Missense TP53 mutation status. They did not consider other mutation 

types since they have low sample numbers, which cannot be analysed using the ANNI 

algorithm. Chapter 5 seeks to build an interaction network and driver analysis for the TP53 

pathway in the Wild-type TP53 status in the three examined cohorts.  
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CHAPTER 55 ANN INFERENCE MODELLING INTERACTION AND 

IDENTIFICATION OF TP53 PATHWAY DIFFERENTIAL DRIVERS IN 

WILD-TYPE  

5.1. Introduction  

The previous chapter presented the application of ANN approaches for modelling the TP53 

pathway based on the mutation status of the TP53 gene using data from three TCGA projects 

(COADREAD, PAAD, and STAD). The results indicated a panel of distinctive predictors 

associated with the TP53 pathway in Mutant- and Wild-type mutation status of the TP53 gene.  

The interaction network leads to the identification of differential drivers associated with the 

TP53 pathway in the MissenseTP53 mutation status for each project separately. The 

combined analysis revealed common drivers associated with the pathway in the 

MissenseTP53 state for different projects. This chapter models the interaction for the 

distinctive predictors associated with the TP53 pathway in the Wild-type state of the TP53 for 

the three TCGA projects and identifies the concordant drivers between all projects.  

The Wild-type TP53 has important physiological roles within the cell. It becomes activated 

upon cellular stress, causing the cell cycle to stop repair or eventual cell death if the damage 

is severe. This process is facilitated by various transcriptional factors that interact with the 

Wild-type TP53 to activate or repress appropriate downstream target genes in cancer. The 

Wild-type TP53 induces the expression of genes that inhibits cancer growth and progression. 

It is likely that abnormal signalling of the TP53 pathway occurs in cancer that carries Wild-type 

TP53. In recent years, studies in the field have supported the development of new therapeutic 

approaches that target Mutant- and Wild-type TP53 to suppress tumour growth 

(Babamohamadi et al., 2022). Consequently, it is crucial to model the interaction associated 

with the pathway in the Wild-type TP53 status.  

5.2. Chapter aims  

This chapter is an extension of the analysis that has been done in chapter 4. It builds 

interaction networks and identifies molecular drivers using the differential predictors 

associated with the TP53 pathway in the Wild type state of the TP53 genes for the three TCGA 

projects (COADREAD, PAAD and STAD). These predictors have been Identified and 

mentioned in sections 4.6.1, 4.6.2, and 4.6.3. Moreover, this chapter supports the project's 

overall goal by demonstrating that ANN-based data mining techniques could be used as a tool 

for pathway modelling. This chapter is discrete from Chapter 4 since it is focused on modelling 
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of interaction associated with the TP53 pathway in its wild-type state. This is crucial for 

understanding normal cellular processes, discovering therapeutic targets, identifying 

dysregulation in cancer and gaining insights into cancer biology. By studying TP53 interaction 

network in the wild-state, it is possible to distinguish between normal pathway regulation and 

aberrant signalling caused by mutations. This helps in identifying specific alterations 

associated with cancer development.  

5.3. Chapter objectives  

 Build ANN of interaction (ANNI) for the Wild-type TP53 cohort for each project.  

 Predict the key interactions associated with the pathway in the Wild type TP53 state for each 

project.  

 Identification of differential drivers connected to the pathway in the Wild type TP53 state for 

each project.  

 Combined analysis to identify similarity in drivers between different projects.  

5.4. Methods  

This analysis involves building of the interaction network for the distinctive predictors 

associated with the wild type TP53 which obtained through the application of the Stepwise 

ANN approach in section 4.6.1. ANN network inference and driver approaches were applied 

following the protocols described in chapter3. Figure 5.1 provides a schematic representation 

for the analysis stages.  
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Figure 5.1: A schematic representation for the stage of analysis. 

5.5. Results and Discussion  

5.5.1. TCGA-COADREAD-WTTP53 cohort  

The distinctive predictors associated with the TP53 pathway for the TCGA-COADREAD 

Wildtype TP53 cohort were identified in the previous chapter. These predictors were used to 

build the network of interaction using the ANNI algorithm, and a total of 107 inputs were used 

to run the interaction analysis following the protocol described previously, which produced a 

matrix of (107x(107-1))11130 interactions; the results were filtered, and drivers were identified 

using the method described in section 3.5.3. A rank order was devised based on the highest 

sum of interaction values. The top-100 interactions indicated seven hub targets, four of which 

are known pathway members (GADD45B, ZMAT3, BAS, and SIAH1), and three of which 

(RPS27L, SNRPD1, and MPDU1) are novel to the pathway.  

The results of the top-100 interactions were presented using Cytoscape, as shown in Figure 

5.2. RPS27L appeared as a major subnetwork with 10 genes not belonging to the pathway 

and one interaction with a known pathway member (BAX), which appeared as a hub node. 

There were overlaps between the two subnetworks in three genes (UBE2N, BOLA3, and 

FASTKD1). RAPS27L was identified among the genes that are common between five 
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colorectal datasets in the analysis presented in section 3.6.2. RPS27L protein was more 

prevalently expressed in the WTTP53 compared to the Missense TP53 cohort, according to 

the cBioPortal result. The association between RPS27L and Bax (a well-known apoptosis 

regulator factor) in the presented ANN result was related to He and Sun’s (2007) finding that 

RPS27L was among the ribosomal proteins that regulate the TP53 function and a direct TP53 

target that mediates p53-induced apoptosis. Moreover, differential drivers associated with the 

pathway in the TCGA-COADREAD-WTTP53 cohort are identified and presented in Figures 

5.5 and 5.6. The differential drivers include members of the TP53 pathway found to be top 

targets (GADD45A and BAX); and members who showed as top sources (ATM and BCL2). 

Novel genes were also found, including the top target drivers (TRIAP1 and CDCA2), and the 

top source drivers (ATRX and ZNF445). RAPS27L also appeared as a top target driver that is 

negatively influenced by other genes in the network.  
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Figure 5.2: Cytoscape image for the TCGA-COADREAD-WTTP53 cohort  

Blue nodes indicate known TP53 targets, and the red nodes indicate new candidates. The 

blue lines indicate positive interactions, and the red lines indicate negative interactions. Line 

thickness indicates interaction strength. Hub nodes are those with more than 5 interactions  
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Figure 5.3: RPS27L subnetwork  

Represents the major novel hub node with 10 new interactions with non-pathway members 

(shown as red nodes) and one interaction with known pathway member (BAX) (shown as 

blue node) 

 

Figure 5.4: Expression of RPS27L gene in cBioPortal  

The gene is more highly expressed in the TCGA-COADREAD WTTP53 cohort compared to 

the TCGA-COARDEAD-MissenseTP53 cohort Source: cBioPortal  

Missense 
TP53 

Wild-Type TP53 
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Figure 5.5: Differential drivers (as targets) associated with the TCGA-COADREAD-WTTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 pathway 

members, and red colour indicates novel targets 
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Figure 5.6: Differential drivers (as sources) associated with the TCGA-COADREAD-WTTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 pathway 

members, and red colour indicates novel targets 
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5.5.2. TCGA-PAAD-WTTP53 cohort  

The analysis of the TCGA-PAAD-WTTP53 cohort was done using the distinctive predictors 

identified in section 4.5. The interaction network was done using the ANNI protocol explained 

in section 3.4.2, producing a matrix of (195 x (195-1)) 37830 interactions. The results were 

filtered out based on the highest sum of interactions. NXF2B, CDCA2, FM01, and TMPRSS4 

were found to be the major hub nodes for the top-100 interactions. NXF2B represented the 

subnetwork that was highly influenced by other genes, five of which were known pathway 

members, while 34 were new to the pathway. The cBioPortal result showed higher expression 

of NXF2B protein in the TCGA-PAAD-WTTP53 than in the MissenseTP53 cohort, as shown 

in Figure 5.7. NXF2B gene is related to progesterone-receptor negative breast cancer, based 

on the Human Disease Database search (Progesterone-Receptor Negative Breast Cancer 

disease: Malacards - Research Articles, Drugs, Genes, Clinical Trials).  

No previous report was found on the association of NXF2B and pancreatic cancer, which could 

be a novel finding of the ANN inference approach. However, NXF2B does not appear among 

the top targets identified from the driver analysis results. By contrast, TMPRSS4 gene, which 

was found among the hub nodes for the top-100 interactions, was also found as a target 

differential driver, with the highest sum of the average interactions for the whole network A 

literature search also supports this finding; a remarkable overexpression of TMPRSS4 has 

been documented in pancreatic cancer tissue, and it plays a control role in cellular proliferation 

and apoptosis (Gu et al., 2021), indicating an important role in pancreatic cancer. Moreover, 

most of the identified top differential drivers did not belong to the TP53 pathway, including 

RHBDL2, MST1R, and IGFBP2 as the top targets; and NDE1, FAM83A, and OSEPL3 as the 

top sources. Figures 5.10 and 5.11 present the differential driver analysis results.  

https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
https://www.malacards.org/card/progesterone_receptor_negative_breast_cancer
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Figure 5.7: Cytoscape image for the TCGA-PAAD WTTP53 cohort  

Blue nodes indicate known TP53 targets, and the red nodes indicate new candidates. Blue 

lines for positive interactions and the red lines indicate negative interactions. Line thickness 

indicates interaction strength. Hub nodes are those with more than 5 interactions 
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Figure 5.8: NXF2B subnetwork  

Represents the major hub node, with 34 new interactions. Non-members of the pathway 

shown as red nodes, and 5 interactions with known pathway members shown as blue nodes. 
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Figure 5.9: Expression of NXF2B gene in cBioPortal 

The gene is more highly expressed in the TCGA-PAAD WTTP53 cohort compared to the 

TCGA-PAAD-MissenseTP53 cohort 
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Wild-Type TP53 
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Figure 5.10: Differential drivers (as targets) associated with the TCGA-PAAD-WTTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 

pathway members, and red colour indicates novel targets 
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Figure 5.11: Differential drivers (as sources) associated with the TCGA-PAAD-WTTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 

pathway members, and red colour indicates novel targets 

5.5.3. TCGA-STAD-WTTP53 cohort  

This analysis uses the distinctive predictors associated with the TP53 pathway for the 

TCGASTAD-WTTP53 cohort identified in section 4.5. The interaction network was built using 

ANNI approach following the protocol explained in section 3.4.2, creating a matrix of (422 
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x(4221))3569 interactions. These were filtered out based on the sum of the interactions. The 

results of the top-100 interactions revealed five main hub targets which do not belong to the 

TP53 pathway (FUT8, SNORD116-26, TSNAXIP1, CHSY1, and TRAM1L1). These targets 

have negative interactions, mainly with non-pathway members.  

FUT8 represents the main hub node, with 35 interactions, the interesting observation about 

this subnetwork is that all the interactions are not members of the TP53 pathway. Which may 

indicate a non-direct relation of this gene with the TP53 pathway. FUT8 protein expression is 

significantly higher in the Wild-type TP53 compared to the Missense TP53 cohort, according 

to the cBioPortal results, as indicated in Figure 5.12. Upregulation of FUT8 has been described 

in different cancers, including gastric cancer, indicating a possible function in the regulation of 

tumour development and progression (Liao et al., 2021).  

The driver analysis indicates novel differential elements that mostly appeared as sources that 

did not belong to the TP53 pathway. Among them, ARHGAP28, BTBD7, and AIM1L were the 

top differential targets; and CAPSL, C8orf48, and SNORD116.25 were the top differential 

sources. Known pathway members were also found mainly as top differential targets, including 

TSC2, BCL2L1, and TP73. The differential drivers are presented in Figures 5.15 and 5.16.  



 

154 

 

Figure 5.12: Cytoscape image for the TCGA-STAD WTTP53 cohort  

Blue nodes indicate known TP53 targets while red nodes indicate new candidates. Blue lines 

indicate positive interactions, and red lines indicate negative interactions. Line thickness 

indicates interaction strength. Hub nodes are those with more than 5 interactions 

 

Figure 5.13: FUT8 subnetwork  

Represents the major hub node with 35 new interactions with non-TP53 pathway members 

shown as red nodes 
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Figure 5.14: Expression of FUT8 gene in cBioPortal  

The gene is more highly expressed in the TCGA-STAD WTTP53 cohort compared to the 

TCGA-STAD-MissenseTP53 cohort. 

Missense TP53 Wild-Type TP53 
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Figure 5.15: Differential drivers (as targets) associated with the TCGA-STAD-WTTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 

pathway members, and red colour indicates novel targets 
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Figure 5.16: Differential drivers (as sources) associated with the TCGA-STAD-WTTP53  

Sorted based on the total average of interactions. Blue colour indicates known TP53 

pathway members, and red colour indicates novel targets 
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5.5.4. Combined analysis for the WTTP53 differential drivers of the three 

projects  

The differential drivers associated with the TP53 pathway in the WTTP53 state for the 

investigated projects (COADREDA, PAAD, and STAD) were combined together to identify the 

concordant source drivers among all cohorts. The results indicate 11 novel source drivers, one 

of which (CENPM) was shared in the COADREAD and STAD projects, while the remaining 10 

were common between the PAAD and STAD projects. Four of them (ITPR3, IQGAP3, EPS8L1 

and GPRC5A) had high protein expression for the corresponding cancer type based on the 

Human Protein Atlas result. TP53 pathway members were also found to be concordant source 

drivers, including PIGS and CDK2. A parallel analysis was also done for the target drivers, and 

the results revealed five elements (EFNA4, CDCA2, AIM1L, ANXA3, and AP3B2). This 

outcome concurs with the source driver combined results (in terms of the five elements), which 

means that these genes were equality important as sources and as targets. Table 5.1 presents 

the result of the combined analysis of the source drivers.  

Table 5.1: Combined analysis for the three sets (source drivers). Orange colour indicates 

novel sources, blue colour indicates known pathway members 

Influencer (Sources) 

Gene Symbol Gene Name Project Rank Sum of 
Average 

ABS 

CENPM  Centromere Protein M  
COADREAD  91  -73.6409  73.64087  

STAD  289  -92.6156  92.6156  

MYEOV  Myeloma Overexpressed  

PAAD  4  279.6271  279.6271  

STAD  395  -145.635  145.6347  

ITPR3  Inositol 1,4,5-Trisphosphate  

Receptor Type 3  

PAAD  15  230.6639  230.6639  

STAD  403  -148.243  148.2432  

IQGAP3  IQ Motif Containing GTPase  

Activating Protein 3  

PAAD  23  210.8181  210.8181  

STAD  386  -143.816  143.8164  

EPS8L1  EPS8 Like 1  

PAAD  28  202.7906  202.7906  

STAD  396  -145.689  145.6894  

GPRC5A  G Protein-Coupled Receptor Class  

C Group 5 Member A  

PAAD  36  190.4279  190.4279  

STAD  370  -137.063  137.0634  

PLEK2  Pleckstrin 2  PAAD  59  158.324  158.324  



 

159 

Table 5.1: Combined analysis for the three sets (source drivers). Orange colour indicates 

novel sources, blue colour indicates known pathway members 

Influencer (Sources) 

Gene Symbol Gene Name Project Rank Sum of 
Average 

ABS 

STAD  285  -90.1002  90.10022  

FOXQ1  Forkhead Box Q1  

PAAD  62  156.4982  156.4982  

STAD  364  -133.574  133.5744  

E2F8  E2F Transcription Factor 8  
PAAD  63  154.5518  154.5518  

STAD  415  -159.575  159.5751  

DEPDC1B  DEP Domain Containing 1B  

PAAD  67  150.557  150.557  

STAD  402  -148.106  148.106  

GRHL2  
Grainyhead Like Transcription Factor 2  

PAAD  80  134.9482  134.9482  

STAD  417  -162.312  162.3122  

PIGS  
Phosphatidylinositol Glycan Anchor 
Biosynthesis Class S  

COADREAD  94  -78.3905  78.39048  

STAD  20  12.93958  12.93958  

CDK2  Cyclin Dependent Kinase 2  PAAD  95  117.824  117.824  

STAD  327  -112.898  112.8976  

5.6. Summary and conclusion  

This chapter used ANNI approach to model the interactions between the distinctive predictors 

associated with the TP53 pathway in the WTTP53 state for each of the three TCGA projects 

(COADREDA, PAAD, and STAD). The results revealed key interactions and novel differential 

drivers for each of the investigated cohorts, involving seven major hub nodes associated with 

the pathway in the WTTP53 state for the COADREAD project, three of which (RPS27L, 

SNRPD1, and MPDU1) were novel to the TP53 pathway; the remaining four (SIAH1, ZMAT3, 

GADD45B, and Bax) were known pathway members.   

RPS27L represents a novel subnetwork with the highest negative interactions. RPS27L 

protein was highly expressed in the WTTP53 based on the cBioPortal result. The interaction 

analysis for the TCGA-PAAD-WTTP53 cohort showed five main novel nodes (NXF2B, 

TMPRSS4, CDCA2, FM01, and RHBDL2). TMPRSS4 was also found to be one of the top 

target drivers, with the highest total number of interactions among the whole network. For the 
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TCGA-STAD-WTTP53 project interaction analysis, there were five novel hub targets 

associated with the pathway in the WTTP53 state: FUT8, SNORD116-26, TSNAXIP1, CHSY1, 

and TRAM1L1. FUT8 acted as a subnetwork, which was highly connected with other genes.   

The combined analysis revealed the highest commonality between the differential source 

driver results of the PAAD and the STAD projects. Some of these features such as, MYEOV, 

FOXQ1, GRHL2 and ITPR3 have been linked previously to poor prognosis in pancreatic 

cancer based on EBI search (https://www.ebi.ac.uk/). However, most of these common 

elements are novel to the pathway. No previous research has relate them to the pathway. The 

presence of these drivers among the top hits in two out of three projects could suggest an 

important connection between these drivers and the pathway, It may also be an indication that 

the system is attempting to maintain balance by interacting with features that are not known 

to the pathway. In conclusion, this chapter reflected the power of the ANNI approach and driver 

analysis for quantifying and modelling the interactions within the TP53 pathway. It also 

identified novel drivers associated with the pathway in the Wild-type state of the TP53.  
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CHAPTER 6 

 GENERAL DISCUSSION AND CONCLUSION  

6.1. Overview  

Despite extensive progress in numerous research specialties over the decades, cancer 

remains a major global burden, with fast growth in incidence and mortality (Cui et al., 2020). 

Several genetic alterations are instrumental in cancer, involving diverse genes in related 

processes. Genetic abnormalities associated with cancer have been broadly documented 

since the early discovery of oncogenes and tumour suppressor genes, and signalling 

pathways are now recognized for their crucial roles in controlling cellular processes; they are 

therefore important in the development of cancer and its potential therapy (Yip & Papa, 2021). 

The TP53 pathway plays a major role in controlling genomic stability and cell cycle 

progression. It contains a protein network of diverse inputs and downstream outputs which, 

upon activation (during cellular stress) lead to ultimate biological responses, such as cell cycle 

arrest and apoptosis. The pathway has an anti-proliferative role in response to various 

stresses. Thus it has been recognized as a tumour suppressor pathway. The TP53 gene, 

which is the main regulator of the pathway, acts as a transcriptional factor that controls the 

biological function based on the stress signal.   

The TP53 gene is the most commonly mutated in human cancers, ranging from 30-50% 

prevalence in every cancer type, often at higher frequency in more advanced stages of cancer, 

with an overrepresentation of Missense mutations (Olivier et al., 2010). Increasing knowledge 

has been gained regarding the biology of TP53 and its signalling mechanism, and the 

prognostic function of the Mutant TP53 has been recognized as highly significant in cancer 

(Robles & Harris, 2010). Patients with TP53 mutations usually have a worse prognosis, 

especially in certain common variants such as colorectal cancer and leukaemia. In breast 

cancer, it has been identified as an independent marker for poor prognosis (Petitjean at al., 

2007). However, the clinical implications and development of effective therapeutic approaches 

remain challenging areas for emergent research. Although the information regarding the 

pathway elements and how they interact has been categorised and automated in the 

database, this knowledge is based on already published experimental results in the literature. 

It's possible that some details are lacking that are essential to understanding the pathway. For 

this, we looked at the entire TP53 network by investigating both established and novel aspects 

of the TP53 pathway in cancer. In order to find new drivers that could be added to the pathway,   

In the field of targeted therapy, the mutation status of the TP53 (either Mutant or Wild-type) 

affects the selection of therapeutic approaches. Degradation of the Mutant TP53 and 
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restoration/stabilization of the Wild-type TP53 are among the approaches that have been used 

to restore the TP53 pathway (Hernández Borrero & El-Deiry, 2021). The TP53 mutation status 

with a focus on the Missense TP53 mutation type was selected as the main subject for the 

analysis undertaken in this research.   

6.2. Analytical approaches  

A massive scientific effort has been made to understand the disease through the study of 

molecular alterations. High throughput technologies and muti-omics analysis, including 

microarray and sequencing approaches, have enabled a deeper insight into this complex 

disease by providing parallel analysis of multiple genes. This helps in improving the 

understanding and management of the disease. However, a complete and comprehensive 

understanding of cancer remains challenging since a huge amount of data has been 

generated as a result of omics technology application that requires new analytical approaches 

to make sense of omics data. Computational methods have contributed to the transformation 

of molecular genomic data into biologically relevant information that could be utilized in clinical 

settings to identify significant cancer patterns and use them to classify patients and provide 

therapeutic guidance. Particular approaches project new ways of data visualization based on 

pattern recognition, such as clustering, or class prediction, such as supervised classification. 

Moreover, a growing number of researchers are focused on network and pathway modelling 

to infer new genetic interactions and biological processes from expression data (Slonim, 

2002).   

A pathway level analysis can reduce the complexity and dimensionality of the gene expression 

data and thereby enhance analytical power by focusing on fewer tested hypotheses. Such 

analysis also facilities the interpretation of results based on the fact that genes that belong to 

a specific pathway are usually involved in certain characteristic biological functions (Zheng et 

al., 2020). There are multiple pathway analysis tools that have been discovered over the years 

to be used for the analysis of omics data. Some of these tools, such as pathway-level 

integrative approaches, use combined P-value to assess the statistical significance of each 

pathway among multiple sets. This could be predisposed to false estimation, especially for 

datasets with large sample sizes. Other techniques use existing knowledge from literature to 

construct a network for each pathway, which can be helpful in determining how the phenotypes 

differ significantly in their pathways, but does not permit novel discoveries.  

Existent strategies utilizing machine learning approaches offer the advantage of incorporating 

multiple machine learning techniques, allowing them to classify samples according to the 

pathways that are strongly associated with the phenotype. However, they do not take into 
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consideration the interaction between genes in the pathway, an issue that has been addressed 

in this research by developing a novel computational approach for pathway modelling based 

on ANN inference algorithm.   

6.3. Study contributions  

This study’s ANN application was applied to analyse the TP53 pathway in cancer, which 

enabled quantification and measurement of the interactions between members of the pathway. 

By evaluating existing features and suggesting novel ones that might be utilised to manage 

the pathway in cancer, the study deepens our understanding of the mechanism behind the 

development of cancer. ANN data mining technique, as explained previously, has the 

advantages of high statistical power, non-linearity, and low risk of false discoveries. Thus, it 

offers some novel advantages over commonly used existing methods. Also, the 

implementation of the ANNI algorithm adds strength to the method by efficiently model all the 

possible interactions between the identified genes. It also provides more information regarding 

the magnitude and the directionality of the interaction, and the application of the driver analysis 

enabled the identification of key molecular drivers and provided a ranking of these drivers 

based on their general influence upon the system of interest.  

This study adds knowledge by referencing novel patterns and key drivers associated with the 

TP53 pathway in three key areas:   

By considering the analysis of the TP53 pathway in one cancer type (colorectal cancer). By 

analysing the TP53 pathway in three different cancers (colorectal, gastric, and pancreatic 

cancers) regarding certain conditions (the Mutant versus the Wild type status of the TP53 

gene).   

By comparing the obtained results of the second analysis against existing pathway analysis 

tool (MetaCore).   

By validating the results using multiple datasets, each of which was analysed separately and 

independently, thereby reducing the errors that might occur and the risk of false discoveries.   

Only consistent features across all cohorts were considered for the final results, and it is 

unlikely that such features would occur by random chance. Also, the selection of the data was 

undertaken for additional layers for validation of the results. The first analysis used 

transcriptomic datasets (E-MTAB-6698), which have been normalized and organized as a 

metadata set; the second analysis used high-quality RNA sequencing data from the TCGA. 
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Moreover, the consistency between the ANN and the MetaCore results represents an 

additional strength for the ANN analysis findings.   

6.4. Study limitations  

ANN data mining approaches have notable limitations, particularly regarding performance 

trade-offs and practicality. The computational timing required to generate results using the 

Stepwise ANN method is affected by the data size; greater data sizes (i.e., more voluminous 

data sets) take longer to analyse, entailing more costs. Based on the project’s broad timetable, 

this restricts the potential for future investigation. Another drawback is that ANN results are 

obtained in a large file format, which takes up a lot of storage space on the C drive, causing 

an additional computational burden. Due to the black box nature of the ANN algorithm, it is not 

completely clear how those results are obtained (as described in Chapter 2).  

Additionally, since presenting all of the results is difficult, the emphasis was placed on those 

with high concordance (the top-200 outputs). Even though this might be a practical way to 

handle the results and take them a step further to interaction analysis, it limits the visualization 

of other outputs that could be potentially relevant. Furthermore, the complexity of the 

interaction matrices produces another limitation, making it crucial to select the right filtering 

strategy for the obtained results. As a result of selecting only the top-100 interactions for 

visualization, other relevant and consistent hubs may not be visible. The solution for this issue 

was the implementation of the driver analysis, whereby each input was assisted, for it is the 

general influence upon the others within a dataset.  

Another issue is that experimental methods used to generate the data (microarray and RNA 

sequencing) also have limitations; these methods use different laboratory procedures, 

including probe selection, labelling, and hybridization procedures. In addition, researchers 

using different experimental conditions regarding sampling techniques, sample anatomical 

side, and patient ethnicity result in poor reproducibility between experiments. Although the 

data used for this study were carefully selected regarding the origin and the normalization 

technique used, it still entails some level of bias. Consequently, none of the modelled 

interactions are definitive or fully complete, and this must be considered when interpreting the 

outcomes of this study.  

6.5. Recommendations for future research  

Based on the limitations identified above, numerous future research directions can be 

discerned from the outcomes of this study. On the technical side, data analysis using ANN 
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approaches for multiple omics data, including proteomics, epigenomics, and metabolomics, 

or using different cancer types and pathways could lead to a more comprehensive 

understanding of the data and may highlight its key patterns.  

In this study, Stepwise ANN algorithm implementation was automated, which lead to a marked 

decrease in the processing time, with the possibility of considering more data. The automated 

path also included a section for results sorting, which also helped in reducing the required time 

and the technical errors that may occur due to manual sorting. However, full automation could 

be possible in future works. For instance, it may be possible to generate an automated pipeline 

to connect the Stepwise and the ANN inference algorithms. This would generate the results 

as a final output, reducing the storage capacity and computational burden required for 

analysis. Also, allows young scientists with little expertise to use AMM approaches and acquire 

new knowledge.   

Another level of validation for the obtained results could be added by analysis of the data for 

a large cohort of patients, and further classification of the data for deeper technical insights is 

recommended. For instance, categorization of the phenotypes based on the clinical 

characteristics could lead to new knowledge that could be immediately useful in clinical 

settings. Moreover, experimental work also could add another direction for validation if the 

presented results get more scientific attention and find way toward clinical practice. This may 

include measuring the protein levels of selected hubs using laboratory techniques, such as 

IHC or q-PCR.  

On the commercial side, future directions could include the presentation of the obtained ANN 

results in scientific conferences and company presentations to popularize ANN approaches 

(by demonstrating their utility and efficiency), thereby promoting possible external cooperation 

and increased buy-in from diverse stakeholders. For instance, the common differential source 

drivers associated with the TP53 pathway in the wild type mutation status presented in 

Chapter 5 could be used for potential future cooperation to develop common therapeutic 

strategy, requiring the presentation of the findings to the pharmaceutical community.   
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Appendix   

Complete datasets and result tables used in the project have been moved to the University 

OneDrive cloud store. These files will not be added to this manuscript due to their large size 

and can be accessed if required through contacting the project supervisor.   
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Complete TP53 pathway gene list from KEGG database 

initial_alias description 

TP53 tumor protein p53 [Source:HGNC Symbol;Acc:HGNC:11998] 

PTEN phosphatase and tensin homolog [Source:HGNC Symbol;Acc:HGNC:9588] 

CD82 CD82 molecule [Source:HGNC Symbol;Acc:HGNC:6210] 

SESN1 sestrin 1 [Source:HGNC Symbol;Acc:HGNC:21595] 

TSC2 TSC complex subunit 2 [Source:HGNC Symbol;Acc:HGNC:12363] 

THBS1 thrombospondin 1 [Source:HGNC Symbol;Acc:HGNC:11785] 

SERPINE1 serpin family E member 1 [Source:HGNC Symbol;Acc:HGNC:8583] 

ADGRB1 adhesion G protein-coupled receptor B1 [Source:HGNC Symbol;Acc:HGNC:943] 

SERPINB5 serpin family B member 5 [Source:HGNC Symbol;Acc:HGNC:8949] 

DDB2 damage specific DNA binding protein 2 [Source:HGNC Symbol;Acc:HGNC:2718] 

RRM2B 

ribonucleotide reductase regulatory TP53 inducible subunit M2B [Source:HGNC 

Symbol;Acc:HGNC:17296] 

RCHY1 ring finger and CHY zinc finger domain containing 1 [Source:HGNC Symbol;Acc:HGNC:17479] 

CDK4 cyclin dependent kinase 4 [Source:HGNC Symbol;Acc:HGNC:1773] 

CCNG1 cyclin G1 [Source:HGNC Symbol;Acc:HGNC:1592] 

STEAP3 STEAP3 metalloreductase [Source:HGNC Symbol;Acc:HGNC:24592] 

RFWD2 None 

TP73 tumor protein p73 [Source:HGNC Symbol;Acc:HGNC:12003] 

PPM1D protein phosphatase, Mg2+/Mn2+ dependent 1D [Source:HGNC Symbol;Acc:HGNC:9277] 

APAF1 apoptotic peptidase activating factor 1 [Source:HGNC Symbol;Acc:HGNC:576] 

BAX BCL2 associated X, apoptosis regulator [Source:HGNC Symbol;Acc:HGNC:959] 

CASP3 caspase 3 [Source:HGNC Symbol;Acc:HGNC:1504] 

CASP9 caspase 9 [Source:HGNC Symbol;Acc:HGNC:1511] 

CDK2 cyclin dependent kinase 2 [Source:HGNC Symbol;Acc:HGNC:1771] 

FAS Fas cell surface death receptor [Source:HGNC Symbol;Acc:HGNC:11920] 

IGFBP3 insulin like growth factor binding protein 3 [Source:HGNC Symbol;Acc:HGNC:5472] 

CDKN2A cyclin dependent kinase inhibitor 2A [Source:HGNC Symbol;Acc:HGNC:1787] 
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CCNE1 cyclin E1 [Source:HGNC Symbol;Acc:HGNC:1589] 

TNFRSF10

B TNF receptor superfamily member 10b [Source:HGNC Symbol;Acc:HGNC:11905] 

GADD45G growth arrest and DNA damage inducible gamma [Source:HGNC Symbol;Acc:HGNC:4097] 

GTSE1 G2 and S-phase expressed 1 [Source:HGNC Symbol;Acc:HGNC:13698] 

PERP p53 apoptosis effector related to PMP22 [Source:HGNC Symbol;Acc:HGNC:17637] 

PIDD1 p53-induced death domain protein 1 [Source:HGNC Symbol;Acc:HGNC:16491] 

PIGS phosphatidylinositol glycan anchor biosynthesis class S [Source:HGNC Symbol;Acc:HGNC:14937] 

CDK1 cyclin dependent kinase 1 [Source:HGNC Symbol;Acc:HGNC:1722] 

CCND1 cyclin D1 [Source:HGNC Symbol;Acc:HGNC:1582] 

CDK6 cyclin dependent kinase 6 [Source:HGNC Symbol;Acc:HGNC:1777] 

CDKN1A cyclin dependent kinase inhibitor 1A [Source:HGNC Symbol;Acc:HGNC:1784] 

CHEK2 checkpoint kinase 2 [Source:HGNC Symbol;Acc:HGNC:16627] 

AIFM2 apoptosis inducing factor mitochondria associated 2 [Source:HGNC Symbol;Acc:HGNC:21411] 

ATM ATM serine/threonine kinase [Source:HGNC Symbol;Acc:HGNC:795] 

BCL2 BCL2 apoptosis regulator [Source:HGNC Symbol;Acc:HGNC:990] 

BCL2L1 BCL2 like 1 [Source:HGNC Symbol;Acc:HGNC:992] 

BID BH3 interacting domain death agonist [Source:HGNC Symbol;Acc:HGNC:1050] 

CASP8 caspase 8 [Source:HGNC Symbol;Acc:HGNC:1509] 

CCNB1 cyclin B1 [Source:HGNC Symbol;Acc:HGNC:1579] 

CYCS cytochrome c, somatic [Source:HGNC Symbol;Acc:HGNC:19986] 

GADD45B growth arrest and DNA damage inducible beta [Source:HGNC Symbol;Acc:HGNC:4096] 

GADD45A growth arrest and DNA damage inducible alpha [Source:HGNC Symbol;Acc:HGNC:4095] 

IGF1 insulin like growth factor 1 [Source:HGNC Symbol;Acc:HGNC:5464] 

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 [Source:HGNC Symbol;Acc:HGNC:9108] 

ROS1 ROS proto-oncogene 1, receptor tyrosine kinase [Source:HGNC Symbol;Acc:HGNC:10261] 

SHISA5 shisa family member 5 [Source:HGNC Symbol;Acc:HGNC:30376] 

MDM4 MDM4 regulator of p53 [Source:HGNC Symbol;Acc:HGNC:6974] 

MDM2 MDM2 proto-oncogene [Source:HGNC Symbol;Acc:HGNC:6973] 

RPRM reprimo, TP53 dependent G2 arrest mediator homolog [Source:HGNC Symbol;Acc:HGNC:24201] 
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SFN stratifin [Source:HGNC Symbol;Acc:HGNC:10773] 

SIAH1 siah E3 ubiquitin protein ligase 1 [Source:HGNC Symbol;Acc:HGNC:10857] 

CHEK1 checkpoint kinase 1 [Source:HGNC Symbol;Acc:HGNC:1925] 

SIVA1 SIVA1 apoptosis inducing factor [Source:HGNC Symbol;Acc:HGNC:17712] 

TP53AIP1 tumor protein p53 regulated apoptosis inducing protein 1 [Source:HGNC Symbol;Acc:HGNC:29984] 

ZMAT3 zinc finger matrin-type 3 [Source:HGNC Symbol;Acc:HGNC:29983] 

ATR ATR serine/threonine kinase [Source:HGNC Symbol;Acc:HGNC:882] 
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Commonality Tables for Data Used in Chapter 4 (A)  

GSE13294  GSE17536  GSE26682  

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

DDX27  11  MND1  14  MRPL42  18  

ATP9A  10  BUB1  12  RAN  18  

CBFA2T2  10  CEP55  12  IER3IP1  18  

RNF19B  10  MELK  12  MDH1  17  

ABHD3  9  CDCA5  11  NDUFAB1  17  

CDC45  9  KIF11  11  ATP5B  17  

HSPA4L  9  MAD2L1  11  HAT1  17  

MCM10  9  TNFSF9  11  ELAVL1  16  

MED31  9  BIRC5  10  MRPL44  16  

RAB27B  9  CDC20  10  MRPS18C  16  

RPL22L1  9  CDC45  10  PSMD8  16  

ALYREF  8  CDK1  10  C1QBP  15  

BIRC5  8  PLK2  10  C2orf47  15  

C18orf25  8  RAD51AP1  10  GSPT1  15  

CACYBP  8  RRM1  10  H2AFZ  15  

CCDC68  8  SHCBP1  10  MCMBP  15  

CDCA5  8  TRIP13  10  MRPL11  15  

CENPE  8  ZWINT  10  PSMB5  15  

DNAJC9  8  ANLN  9  STOML2  15  
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GSE13294  GSE17536  GSE26682  

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

FDXR  8  AURKB  9  TRAPPC8  15  

FEN1  8  BUB1B  9  JKAMP  15  

G3BP2  8  CASC5  9  RBM12  15  

HPSE  8  CCNB1  9  NDUFB3  15  

MAP2K1  8  CCNB2  9  SNRPD1  15  

MND1  8  DNAJC9  9  COX8A  14  

PGAM1  8  DTL  9  CPSF6  14  

PGM2  8  ECT2  9  FBXO22  14  

RAN  8  FAS  9  GHITM  14  

RFC4  8  FEN1  9  HNRNPF  14  

SCO2  8  H2AFZ  9  MRPS11  14  

TIFA  8  KIF14  9  MRPS12  14  

TIMELESS  8  KIF23  9  MRPS16  14  

TYMP  8  MCM10  9  NUP37  14  

ANKFY1  7  OIP5  9  PGAM1  14  

APOL2  7  ORC1  9  PSMA1  14  

AURKB  7  ORC6  9  UQCRFS1  14  

BLOC1S2  7  PBK  9  PHLDB1  14  

BUB1B  7  PLK1  9  PRB1  14  

C12orf57  7  PRC1  9  NDUFA12  14  

C18orf8  7  RACGAP1  9  PDIA6  14  

CAND1  7  RAD51  9  PPP1CC  14  

CCNB1  7  SHMT2  9  CRK  14  

DDIAS  7  SOCS6  9  MAPK1  14  
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GSE13294  GSE17536  GSE26682  

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

DDX46  7  TIMELESS  9  PTGES3  14  

E2F7  7  TK1  9  SARNP  14  

FANCI  7  UBE2S  9  ACP1  13  

FBXO5  7  ARL4C  8  ADK  13  

FBXO8  7  BLOC1S2  8  CCNB1  13  

FECH  7  CCNA2  8  DCUN1D5  13  

FOXM1  7  CDC6  8  EEF1E1  13  

FTX  7  CDKN1A  8  GMNN  13  

GAS2L1  7  DDB2  8  GRSF1  13  

GINS3  7  DDX27  8  HACD3  13  

IREB2  7  GMNN  8  IDH3A  13  

KIF23  7  KIF18A  8  MAD2L1  13  

KIF2C  7  KIF18B  8  MOB1A  13  

MCM2  7  MCM2  8  MRPL37  13  

MDM2  7  MDM2  8  MRPS7  13  

NCAPH  7  MKI67  8  NAA50  13  

NDC1  7  NCAPH  8  NDUFS3  13  

NDE1  7  NDC1  8  NME1  13  

ORC1  7  PAICS  8  RPL26L1  13  

PAICS  7  PARPBP  8  SAE1  13  

PBX1  7  PGAM1  8  SNRPF  13  

PRC1  7  POLD2  8  TMEM126A  13  

SERINC3  7  RFC5  8  TMEM167A  13  

SMAD4  7  RNF19B  8  TMPO  13  

SMCHD1  7  SNRPF  8  TRA2B  13  

SNRPD1  7  STIL  8  UBE2S  13  
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GSE13294  GSE17536  GSE26682  

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

SPATA18  7  SUV39H2  8  DHX36  13  

SUV39H2  7  TIPIN  8  ICOSLG  13  

TIPIN  7  TSPAN6  8  LLGL1  13  

TMEM167A  7  AAR2  7  SF3B5  13  

TNFSF9  7  ARHGAP11A  7  TMED2  13  

TNNC2  7  AURKA  7  TMEM70  13  

TSR1  7  C18orf21  7  UTP18  13  

UBE2S  7  CCDC88A  7  ZNHIT3  13  

VAPA  7  CDCA3  7  HAUS1  13  

ZCCHC2  7  CDK2  7  ARL1  13  

ZWINT  7  CHEK1  7  CAND1  13  

ABCE1  6  CKS2  7  MMADHC  13  

AEN  6  DCUN1D5  7  OSTC  13  

ARID3A  6  DEPDC1  7  PBK  13  

ARL6IP5  6  DLGAP5  7  NCBP1  13  

ASCL2  6  DTYMK  7  ACAT1  12  

ASF1B  6  EXOSC3  7  AIFM1  12  

ASPHD2  6  EZH2  7  CACYBP  12  

ATP5B  6  FANCI  7  CHEK1  12  

BUB1  6  HMBS  7  EMC8  12  

C14orf142  6  HSPE1  7  FANCI  12  

C1QBP  6  INO80C  7  GLRX3  12  

C5orf15  6  INPP1  7  GRPEL1  12  

CBX5  6  KIF15  7  ILF2  12  

CCNB2  6  KIF2C  7  MRPS30  12  

CCT2  6  MTFP1  7  PAICS  12  
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GSE13294  GSE17536  GSE26682  

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

CD274  6  MTHFD2  7  POLE3  12  

CDCA2  6  NEK2  7  RFC5  12  

CDCA8  6  NME1  7  RRM2  12  

CDKN3  6  NUF2  7  SDHB  12  

CENPM  6  NUP37  7  SLBP  12  

CHD6  6  NUSAP1  7  TIMM17A  12  

CHEK1  6  PA2G4  7  TSN  12  

CLPX  6  PLK4  7  AFF4  12  

CRK  6  RHOF  7  AP5M1  12  

CSNK1A1  6  RPS27L  7  C22orf42  12  

CTPS1  6  RRM2  7  SUZ12  12  

DCUN1D5  6  SARNP  7  ZBED5  12  

DEPDC1  6  SNRPG  7  WDR75  12  

DEPDC1B  6  SPC25  7  CNPY2  12  

DNMT1  6  TMPO  7  EIF4E  12  

EEF1E1  6  TTK  7  FAM96A  12  

EXO1  6  UBE2T  7  G3BP2  12  

FAAP100  6  UNG  7  GCSH  12  

FARP1  6  YTHDF1  7  KIF2A  12  

FERMT2  6  ANXA2P2  6  MRPL3  12  

GLRX3  6  ARMCX1  6  SCO1  12  

GRPEL1  6  ASPM  6  VPS4B  12  

GSE1  6  ATP9A  6  EIF3J  12  

HAT1  6  BAG3  6  LOC101929280  12  

IDH3A  6  C18orf25  6  SNRPG  12  

IRF2BP2  6  C5orf15  6  DDX50  12  
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GSE13294  GSE17536  GSE26682  

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

ISG20  6  CACNA2D1  6  METAP2  12  

JAK2  6  CCDC109B  6  PRPF18  12  

JKAMP  6  CCDC68  6  RBM7  12  

KIF4A  6  CDC25A  6  GPR137  12  

KLHL28  6  CDC25C  6  ACLY  11  

KNSTRN  6  CDCA8  6  AURKB  11  

LAP3  6  CDKN3  6  BIRC5  11  

LEO1  6  CENPK  6  C16orf59  11  

LOC101929280  6  CENPM  6  CCT7  11  

MAPK1  6  CIB1  6  CDCA5  11  

MBD2  6  CKS1B  6  CKS2  11  

MCM4  6  COLEC12  6  DNAJC9  11  

MELK  6  CYSTM1  6  DTYMK  11  

MTFP1  6  DBF4  6  FEN1  11  

MTFR2  6  DENND5A  6  FXN  11  

MTHFD2  6  DNAJB4  6  HSPE1  11  

NAA38  6  DNMT1  6  IMMT  11  

NCAPD3  6  E2F8  6  LSM2  11  

NCAPG  6  ELK3  6  MCM2  11  

NCAPG2  6  EPHA2  6  MRPL21  11  

NELFCD  6  EXO1  6  NDUFAF4  11  

NME1  6  FDXR  6  PNP  11  

NUDT5  6  FOXM1  6  POLR1B  11  

ODF3B  6  GINS1  6  POLR3K  11  

OIP5  6  GPR160  6  PRPF38A  11  

PARPBP  6  HNRNPL  6  PSMD9  11  
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Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

PCM1  6  IFT52  6  RFC2  11  

PLK4  6  KIF20A  6  RFC4  11  

POFUT1  6  KIF4A  6  RNASEH2A  11  

POLQ  6  KNSTRN  6  SHMT2  11  

PPP2R2A  6  KPNA2  6  SLC35B1  11  

PSMD9  6  KRT8  6  SMC2  11  

PSME1  6  LYAR  6  SNRNP25  11  

RASGRP1  6  MAFF  6  SSRP1  11  

RCC1  6  MCM4  6  TIMELESS  11  

RFC1  6  MIS18A  6  TK1  11  

RFC5  6  MRPL19  6  TUBA1C  11  

RNF138  6  NCAPG  6  UBE2N  11  

SCO1  6  NOP58  6  UBE2T  11  

SET  6  NRP1  6  VDAC1  11  

SHANK2  6  OLFML2B  6  C14orf178  11  

SHROOM4  6  PGP  6  MON2  11  

SLBP  6  PHLDA2  6  NEUROD4  11  

SLC35C2  6  PMP22  6  OXT  11  

SNRPF  6  PNPT1  6  PSMC6  11  

SOCS6  6  POFUT1  6  SMARCA5  11  

SPAG5  6  POLE2  6  TMEM145  11  

SRP72  6  PPP2R2A  6  LOC220077  11  

SYPL1  6  PSMD9  6  MUC8  11  

TCTN3  6  PTRF  6  COPZ1  11  

TIMM21  6  QKI  6  DBI  11  

TM7SF3  6  RAB27B  6  MRPL15  11  
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Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

TNFRSF10D  6  RFC2  6  MRPS28  11  

TRIM22  6  RNASEH2A  6  MTX2  11  

TRIP13  6  SDHB  6  SPCS1  11  

TYMS  6  SFRP2  6  WDR61  11  

UBE2T  6  SGCB  6  PIK3C3  11  

VPS4B  6  SKA1  6  TIMM21  11  

WARS  6  SNRPA  6  BID  11  

YME1L1  6  SRA1  6  CCT2  11  

YWHAB  6  TACC3  6  DDX46  11  

ACTR6  5  TAF4  6  ETFA  11  

ADAMTS1  5  TOP2A  6  HNRNPLL  11  

ADPRHL2  5  TPX2  6  MAP2K1  11  

AIDA  5  TSPYL5  6  MRPS23  11  

AIFM3  5  VGLL3  6  NDUFA11  11  

AMD1  5  WDHD1  6  NUDCD2  11  

ANLN  5  ZMAT3  6  PAIP2  11  

ANTXR2  5  ZWILCH  6  PRKRA  11  

ARHGAP30  5  ANTXR1  5  RAB1A  11  

ASPM  5  ANXA1  5  SELT  11  

ATP6V1B2  5  ASCL2  5  TMX1  11  

BCL2L12  5  ASF1B  5  TRAM1  11  

BRCA1  5  BCAT1  5  TYMS  11  

BUD13  5  BNIP3L  5  ATP6V1B2  11  

CAPRIN1  5  BTG3  5  BCAS2  11  

CASC5  5  C19orf33  5  CHMP2B  11  

CCDC109B  5  C2orf47  5  DYM  11  
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Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

CCL4  5  CALD1  5  NRBF2  11  

CCNDBP1  5  CCNE2  5  SCYL2  11  

CDC123  5  CCNF  5  GSK3A  11  

CDC42EP1  5  CDC42SE1  5  DHX9  11  

CDC6  5  CDCA4  5  RPL36AL  11  

CDH1  5  CDK14  5  RNF19B  11  

CDK1  5  CDX2  5  AIMP2  10  

CDK2  5  CENPN  5  ARMC10  10  

CHAC2  5  CLIC4  5  CANX  10  

CHAF1B  5  COL8A1  5  CDC123  10  

CHIC2  5  COQ10B  5  CDC6  10  

CKS1B  5  CPNE1  5  CDKN3  10  

CLEC2B  5  CTGF  5  CENPN  10  

CLN6  5  DGCR6L  5  CFAP20  10  

CNPY2  5  DMWD  5  CHCHD3  10  

CNRIP1  5  DNA2  5  CHCHD6  10  

COPS4  5  DOCK5  5  COPRS  10  

CTPS2  5  ECE2  5  CORO1C  10  

CYB5D1  5  ECM2  5  CYC1  10  

CYB5D2  5  EIF4G1  5  GADD45GIP1  10  

DBF4  5  EMC7  5  GGCX  10  

DDB2  5  ERCC6L  5  GPATCH4  10  

DDR2  5  ESPL1  5  GSTCD  10  

DLGAP5  5  EXOSC9  5  HCCS  10  

DSCR3  5  FAM46A  5  HNRNPD  10  

DYNC1LI2  5  FANCD2  5  LSM4  10  
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Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

EBF1  5  FECH  5  MAPRE1  10  

ECE2  5  FERMT2  5  MRPL35  10  

EFEMP1  5  FLII  5  MRPS17  10  

EFEMP2  5  FSTL1  5  NOLC1  10  

EIF4E  5  GBP2  5  NUP205  10  

ELAC2  5  GLIS2  5  OIP5  10  

ERI1  5  GNB4  5  PPIH  10  

ETFA  5  GSKIP  5  PSMB3  10  

FAS  5  GTF2A2  5  PSMC3  10  

FBXO22  5  H2AFX  5  PSMD12  10  

FBXO45  5  HEG1  5  RACGAP1  10  

FMO4  5  HELLS  5  RBM8A  10  

GCNT7  5  HEXIM1  5  SKA1  10  

GFM2  5  HJURP  5  SLIRP  10  

GGT7  5  HPSE  5  SSR1  10  

GLUD2  5  HSPA4L  5  SUV39H2  10  

GNG11  5  ITGA5  5  TUBB  10  

GPC6  5  JAM3  5  CSN3  10  

GPD1L  5  KCNE4  5  DCST1  10  

GPR160  5  KDSR  5  FAR1  10  

GRPEL2  5  KNTC1  5  GCH1  10  

GRSF1  5  LAMB2  5  GNPTAB  10  

GSKIP  5  LAMB3  5  GPD2  10  

GTF2B  5  LHFP  5  IBTK  10  

GZMA  5  LMCD1  5  MYOC  10  

H2AFZ  5  LOC340107  5  NUFIP2  10  
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Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

HBS1L  5  MAP1B  5  RAB10  10  

HSPE1  5  MCAT  5  RAB6B  10  

IER3IP1  5  MCM3  5  SLC5A2  10  

IFIT3  5  MCMBP  5  TROVE2  10  

IHH  5  ME2  5  TVP23B  10  

IL1R1  5  MED31  5  USO1  10  

ITGA5  5  MFAP5  5  EIF5B  10  

KCTD9  5  MIF  5  NIFK  10  

KDSR  5  MIR100HG  5  ATP4B  10  

KIF14  5  MPHOSPH9  5  DTX2P1UPK3BP1- 

PMS2P11  

10  

KIF18A  5  MRPL17  5  ADNP2  10  

KIF18B  5  MRPL44  5  AMD1  10  

LINC00543  5  NCAPD3  5  C14orf166  10  

LINC00672  5  NCAPG2  5  CDK4  10  

LMNB2  5  NCOA6  5  COPS3  10  

LYSMD2  5  NDEL1  5  CYB5A  10  

MAP3K6  5  NELFCD  5  DCK  10  

MBP  5  NMT1  5  ELAC1  10  

MCM3  5  NNMT  5  ETF1  10  

MCMBP  5  NOL4L  5  FECH  10  

MDH1  5  NTM  5  MRPL30  10  

MFAP1  5  NUTF2  5  MRPL45  10  

MINPP1  5  OSER1  5  ORMDL2  10  

MPHOSPH9  5  PDGFRL  5  P4HB  10  

MRPL11  5  PDLIM7  5  PRDX4  10  
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all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

Gene Name Commonalities 

for all pathway 

members 

MRPL44  5  PDRG1  5  SLC25A5  10  

MRPL46  5  PHLDA1  5  SNRPD2  10  

MRPS11  5  PKD2  5  TM9SF1  10  

MRPS12  5  PKP3  5  TMEM97  10  

MTA2  5  PLAUR  5  TRIAP1  10  

NASP  5  PLEK2  5  UBE2D2  10  

NCLN  5  PLK3  5  ARHGEF6  10  

NDC80  5  POLQ  5  HDHD2  10  

NEIL2  5  POLR1C  5  RAB27B  10  

NOP16  5  POLR3K  5  RNF138  10  

NRBF2  5  PPIB  5  SOCS6  10  

NUP37  5  PPIL1  5  TNFAIP8  10  

ORC6  5  PRLR  5  ZCCHC2  10  

PBK  5  PRRX1  5  ANAPC16  10  

PIGU  5  PSMC4  5  CYB5R4  10  

PIK3C3  5  PSMD14  5  DAD1  10  

PLCB4  5  RAB31  5  DCP1A  10  

PLK1  5  RAD54L  5  EIF4A3  10  

PLK2  5  RANGAP1  5  GNAI3  10  

PQLC1  5  RASSF8  5  HIAT1  10  

PRIM1  5  RFC4  5  ISCA1  10  

PRMT5  5  S100A14  5  LLPH  10  

PRPF39  5  SERPINH1  5  LSM6  10  

QPRT  5  SETBP1  5  MAD2L1BP  10  

RABEP1  5  SFXN1  5  MFAP1  10  

RAD51  5  SLC25A10  5  OST4  10  
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for all pathway 
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for all pathway 
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RAD51AP1  5  SLC35C2  5  PCNP  10  

RAP2A  5  SLF1  5  PDCD10  10  

RNASEH2A  5  SPARC  5  PELO  10  

RNF125  5  SRBD1  5  PGM2  10  

RPL36AL  5  SSTR5  5  RARS  10  

RPS27L  5  SYT7  5  RPF1  10  

RRM2  5  TARBP2  5  SRP72  10  

RTCA  5  THBS2  5  TMEM14B  10  

RUVBL1  5  TIMM21  5  TPRKB  10  

SELT  5  TMEM30A  5  VDAC3  10  

SFXN1  5  TNFRSF10B  5  YWHAQ  10  

SHMT2  5  TNFSF13  5  AASDHPPT  10  

SLC11A1  5  TP53RK  5  ACTR10  10  

SLC25A37  5  TRIM22  5  ARMT1  10  

SLK  5  TTF2  5  C14orf119  10  

SNRPG  5  TTLL12  5  CUL5  10  

SOX4  5  TWIST1  5  PPTC7  10  

SP100  5  TYMP  5  C9orf117  10  

SPDL1  5  TYMS  5  INSL3  10  

SS18  5  UBE2C  5  LDLRAD4  10  

THBS2  5  VCAN  5  LRRC43  10  

TK1  5  VEGFC  5  PRDM12  10  

TNFAIP8  5  VPS37B  5  NIF3L1  10  

TOP2A  5  WDR12  5  NOL11  10  

TPX2  5  WDR41  5  MCL1  10  

TRA2B  5  XRCC5  5  TBC1D15  10  
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TTK  5  YEATS4  5  AP2S1  9  

UHRF1  5  YWHAB  5  ASF1B  9  

USP7  5  ZEB2  5  ATG101  9  

37500  4  ZFPM2  5  BUB1B  9  

AAR2  4  ZMYND8  5  CDK2  9  

ABLIM3  4  38412  4  CKAP5  9  

ACADVL  4  ABAT  4  CKS1B  9  

ACSS2  4  ACACA  4  DDX19A  9  

ADAM10  4  ACTL6A  4  DLGAP5  9  

ADAM9  4  ADAM12  4  DNMT1  9  

ADGRL4  4  ADNP2  4  EXO1  9  

AFG3L2  4  ADRM1  4  EXOSC3  9  

AGPAT5  4  AEBP1  4  FDX1  9  

AK6  4  AEN  4  GAPDH  9  

AKT3  4  AFG3L2  4  GNB1  9  

ALAS1  4  AKAP8  4  GPN3  9  

ANGPTL2  4  AKT3  4  H2AFX  9  

ANXA2P2  4  ANKRD10-IT1  4  KIF11  9  

AP3M1  4  ANKRD27  4  LMNB2  9  

ARF3  4  ANXA2P1  4  MCM10  9  

ARHGAP11A  4  ANXA2P3  4  MCM7  9  

ARHGAP9  4  AP1S3  4  MED17  9  

ARPC5  4  APOL1  4  MRPL17  9  

ARPP19  4  ARFGAP1  4  MRPL19  9  

ATAD2  4  ARFGEF2  4  NAP1L4  9  

ATP6V0D1  4  ARRDC3  4  NCAPD3  9  
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ATP6V1A  4  ATF1  4  NUDT5  9  

AUNIP  4  ATP5D  4  PDCD5  9  

BAG3  4  BASP1  4  PDSS1  9  

BAK1  4  BCAS2  4  PIGX  9  

BARHL1  4  BCL11A  4  PNO1  9  

BASP1  4  BCL6  4  PPP1R8  9  

BCCIP  4  BGN  4  PRMT5  9  

BLM  4  BICC1  4  PSMD14  9  

BRI3BP  4  BID  4  RBM28  9  

C11orf96  4  BLVRA  4  RRM1  9  

C18orf21  4  BRCA1  4  SMNDC1  9  

C1D  4  C10orf10  4  TALDO1  9  

C1R  4  C10orf2  4  TPX2  9  

C20orf194  4  C1R  4  TRMT112  9  

C8orf58  4  CALU  4  TSR1  9  

CABIN1  4  CAND1  4  UMPS  9  

CAV1  4  CAPN1  4  WDR12  9  

CCAR2  4  CASP4  4  YIF1A  9  

CCDC154  4  CBFA2T2  4  ARL6IP1  9  

CCNA2  4  CCAR2  4  B3GNT4  9  

CCNE2  4  CCDC27  4  C2orf16  9  

CCNF  4  CCT7  4  HPYR1  9  

CD93  4  CDC7  4  KCNN1  9  

CDC20  4  CDCP1  4  MBD4  9  

CDC25C  4  CDH11  4  NFIA-AS2  9  

CDC40  4  CDK13  4  PHF3  9  
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CDCP1  4  CECR5  4  TMX3  9  

CDT1  4  CENPA  4  VGLL1  9  

CECR5  4  CENPF  4  VPS13C  9  

CENPA  4  CEP164  4  ZNF322  9  

CENPH  4  CERCAM  4  ZNF645  9  

CENPU  4  CFAP36  4  HTR1B  9  

CENPW  4  CHAF1A  4  DDX18  9  

CHCHD10  4  CLIP4  4  LRRC40  9  

CHMP2B  4  CLTB  4  MAP3K2  9  

CHMP7  4  CMTM3  4  OR7E104P  9  

CHN2  4  COL10A1  4  AGPS  9  

CHRNB2  4  COL11A1  4  ANKFY1  9  

CHST11  4  COL5A1  4  ATP6V0B  9  

CITED2  4  COL5A2  4  EBP  9  

CLINT1  4  CPOX  4  FDXR  9  

CMSS1  4  CSE1L  4  GORASP2  9  

COL18A1  4  CSGALNACT2  4  HAUS6  9  

COL3A1  4  CXCR5  4  IMP3  9  

COL6A2  4  CYB5D1  4  MANF  9  

COPS3  4  CYBRD1  4  ME2  9  

COQ10A  4  CYP1B1  4  PLGRKT  9  

COX8A  4  CYR61  4  RBX1  9  

CPNE1  4  DCTN6  4  SLC25A11  9  

CRCP  4  DDR2  4  TMX2  9  

CTDNEP1  4  DDX39A  4  TOMM22  9  

CYR61  4  DDX54  4  UQCRC1  9  
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for all pathway 
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Gene Name Commonalities 
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DCK  4  DEFB124  4  C18orf25  9  

DCN  4  DERL2  4  CCDC68  9  

DCP1A  4  DHFR  4  DDB2  9  

DDX59  4  DHX15  4  GSKIP  9  

DHFR  4  DIABLO  4  MDM2  9  

DIAPH3  4  DIDO1  4  MED31  9  

DKFZP586I1420  4  DNAJC5  4  NAA38  9  

DOCK5  4  DOCK4  4  NPTN  9  

DONSON  4  DPM1  4  PAFAH1B1  9  

DSC2  4  DPYSL3  4  RNASE4  9  

DSCC1  4  DSCC1  4  RPS27L  9  

DTL  4  DUSP5  4  SMAD2  9  

DUSP18  4  ELMO2  4  TSNARE1  9  

E2F8  4  EMC8  4  UBE2G1  9  

ECT2  4  ENO2  4  ABCB10  9  

EHD2  4  EP300-AS1  4  ADH5  9  

EIF4A3  4  ERO1A  4  ANAPC10  9  

ELP2  4  ERRFI1  4  AP3M1  9  

ENTPD7  4  F3  4  ATP6V1C1  9  

EPG5  4  FANCA  4  C14orf142  9  

EPT1  4  FBL  4  C1D  9  

ERCC6L  4  FBN1  4  COPS4  9  

ERLEC1  4  FBXL7  4  CTDSPL2  9  

ERO1A  4  FBXO22  4  DCTPP1  9  

EVL  4  FCHO2  4  DNAJA1  9  

EXOSC2  4  FLT4  4  GDI2  9  
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EXOSC3  4  FLVCR1  4  GTF2A2  9  

FAM101B  4  FSCN1  4  IARS  9  

FAM169A  4  GADD45B  4  IREB2  9  

FAM96A  4  GAPDH  4  KIF23  9  

FBN1  4  GAS1  4  LAP3  9  

FBXL7  4  GAS2L1  4  LSM5  9  

FLII  4  GCN1  4  MMGT1  9  

FRMD6  4  GCNT3  4  NFIL3  9  

FXN  4  GCSH  4  PGRMC1  9  

GAS1  4  GGCT  4  RFC3  9  

GCSH  4  GGT5  4  TCTN3  9  

GGA1  4  GID8  4  VBP1  9  

GINS2  4  GINS2  4  ACTR6  9  

GJA1  4  GJA1  4  FBXO8  9  

GMEB2  4  GJB3  4  ISOC1  9  

GNAI3  4  GMPS  4  ORC4  9  

GPN2  4  GOSR2  4  PANK3  9  

GTF2A2  4  GPC6  4  SLK  9  

GTF2E2  4  GPR20  4  SRP54  9  

GYS1  4  GTF2B  4  ZBTB1  9  

GZMH  4  H2AFY  4  ASXL2  9  

HACD3  4  HAT1  4  CRYAB  9  

HMBS  4  HAUS3  4  GRINA  9  

HNRNPL  4  HIST2H2AA3  4  MARK2  9  

HSPA14  4  HMMR  4  PDLIM7  9  

ICAM1  4  HOOK1  4  WHAMMP2  9  
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ICMT  4  HOXD12  4  SLC22A14  9  

IFIT5  4  HTRA1  4  SLC5A5  9  

IFRD2  4  IER3IP1  4  MIS18A  9  

IL10RA  4  IER5  4  PRIM1  9  

IL1RN  4  IGF2-AS  4  HNRNPU  9  

INO80C  4  IGH  4  SH3GLB1  9  

ITGAL  4  IL1R1  4  CBX1  9  

ITGB1  4  INHBA  4  CYP2A7P1  9  

ITK  4  ISCU  4  AURKA  8  

JAM3  4  ITGA3  4  CCDC34  8  

KCNK5  4  JAK2  4  CCNB2  8  

KIF11  4  JAM2  4  CDC20  8  

KIF1BP  4  KCNH5  4  CDC45  8  

KIF2A  4  KCNT1  4  CDCA8  8  

LFNG  4  KCTD9  4  CEP55  8  

LGALS1  4  KIAA1462  4  CHAF1B  8  

LINC01560  4  KIF1C  4  CIAPIN1  8  

LMBR1  4  KLF14  4  CMSS1  8  

LOC101928881  4  KLHDC1  4  CNIH4  8  

LOC102725022  4  KLK10  4  DCAF10  8  

LOC158402  4  KLK13  4  ECE2  8  

LOC643733  4  KPNA3  4  FOXM1  8  

LOX  4  LGALS1  4  GINS2  8  

LOXL2  4  LGALS3  4  GPI  8  

LRR1  4  LIF  4  ICT1  8  

LRRC42  4  LIG1  4  KIF1BP  8  
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LTV1  4  LINC00937  4  KIF20A  8  

LYSMD3  4  LMNA  4  KIF2C  8  

MAD2L1  4  LMNB2  4  MCM3  8  

MAF  4  LMO7  4  MELK  8  

MAP2K4  4  LOC101927040  4  MKI67  8  

MAPRE1  4  LOC101928845  4  MND1  8  

MCL1  4  LOX  4  MRPL14  8  

MED11  4  LOXL1  4  MRPS2  8  

MED13L  4  LRCH1  4  MTHFD2  8  

MED17  4  LRRC42  4  NCAPG2  8  

METAP2  4  LSM4  4  NCAPH  8  

MEX3A  4  MAG  4  NDUFB9  8  

MGP  4  MALT1  4  PARPBP  8  

MIR34A  4  MBD2  4  PCBD1  8  

MMADHC  4  MCFD2  4  PFKP  8  

MOV10  4  MCM5  4  PICALM  8  

MPDZ  4  MCM9  4      

MRPS15  4  MPDZ  4      

MRPS18C  4  MRPL14  4      

MRPS30  4  MRPL35  4      

NAA50  4  MRPL37  4      

NARS2  4  MRPS12  4      

NDUFAB1  4  MRPS15  4      

NDUFB5  4  MTA2  4      

NDUFS4  4  MTIF2  4      

NDUFV2  4  NAP1L3  4      
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NEK2  4  NAPG  4      

NOLC1  4  NCLN  4      

NUDCD2  4  NDN  4      

NUTM2B  4  NDUFV2  4      

PAIP2  4  NEDD1  4      

PDS5A  4  NIP7  4      

PES1  4  NOL10  4      

PFDN2  4  NOP10  4      

PHF23  4  NOTCH3  4      

PLA2G16  4  NOX4  4      

PLAUR  4  NR3C1  4      

POLR2A  4  NRBF2  4      

POLR3D  4  NUAK1  4      

PPIL1  4  NUDCD2  4      

PPP4R1  4  NUFIP1  4      

PRDX1  4  NUP107  4      

PRKAR1A  4  NUP50  4      

PRKAR2A  4  OGFOD1  4      

PRPF6  4  PCIF1  4      

PRRC1  4  PDGFRB  4      

PSMC3  4  PDLIM3  4      

PSMD8  4  PES1  4      

PTGES3  4  PFKP  4      

PXDN  4  PHF23  4      

RAB1A  4  PIK3CD-AS1  4      

RAB31  4  PLAGL2  4      
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RACGAP1  4  PLAU  4      

RALBP1  4  PLLP  4      

RANGAP1  4  PLOD1  4      

RARRES3  4  PLXNB2  4      

RARS  4  POLR1B  4      

RBM7  4  POLR2D  4      

REV3L  4  PPDPF  4      

RFC2  4  PPID  4      

RHBDD3  4  PPIF  4      

RNMTL1  4  PPP1CA  4      

RPA1  4  PPP1R3D  4      

RPIA  4  PRKD1  4      

RPL41  4  PRPF19  4      

RTFDC1  4  PSMA1  4      

RTTN  4  PSMA4  4      

S100A14  4  PSMA7  4      
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GSE14333-USA GSE14333-Melbourn GSE4183-Normal colon 

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities for all 

pathway members 

Gene Name Commonalities for 

all pathway 

members 

MND1  13  CEP55  14  SHMT2  13  

CEP55  11  SHMT2  14  MCM3  11  

FEN1  11  BIRC5  12  TIMELESS  10  

RRM1  11  CDC45  12  DCUN1D5  9  

BUB1  10  CDK1  12  FANCI  9  

DNAJC9  10  CCNA2  11  TRIP13  9  

MTHFD2  10  CDC6  11  UBE2S  9  

CCNB1  9  CENPM  11  BUB1  8  

CCNB2  9  KIF2C  11  CDCA5  8  

CDC45  9  KPNA2  11  MCM2  8  

CDC6  9  NCAPG  11  MND1  8  

CDCA5  9  RRM2  11  RACGAP1  8  

CKS1B  9  SNRPF  11  RFC4  8  

MCM10  9  TACC3  11  RFC5  8  

NDC1  9  BRIP1  10  SUV39H2  8  

NME1  9  BUB1  10  TIPIN  8  

OIP5  9  BUB1B  10  TNFRSF10B  8  

PBK  9  C16orf59  10  BIRC5  7  

POLR3K  9  C1QBP  10  BUB1B  7  
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RAD51AP1  9  CDC20  10  CCT7  7  

TIPIN  9  DNAJC9  10  CDK1  7  

ANLN  8  FEN1  10  CKS1B  7  

BIRC5  8  MAD2L1  10  KIF2C  7  

CCNA2  8  MCM2  10  LMNB2  7  

CDC20  8  NUP37  10  MCM10  7  

CDKN3  8  RACGAP1  10  NME1  7  

CHEK1  8  RAN  10  NUP37  7  

DLGAP5  8  RFC5  10  PAICS  7  

ECT2  8  SNRPD1  10  PRIM1  7  

FANCI  8  SPAG5  10  RNASEH2A  7  

KIAA1462  8  TNFSF9  10  SLC39A6  7  

KIF14  8  UBE2S  10  SNRPD1  7  

KIF18A  8  ANLN  9  SNRPF  7  

KIF23  8  CCNB1  9  TPX2  7  

KPNA2  8  CDCA5  9  UBE2T  7  

MAD2L1  8  DEPDC1  9  ANLN  6  

MKI67  8  DLGAP5  9  AURKB  6  

MRPL44  8  DOCK5  9  BRCA1  6  

NEK2  8  ELAVL1  9  CDC6  6  

PAICS  8  INO80C  9  CDCA3  6  

PGAM1  8  KIF23  9  DBF4  6  

RACGAP1  8  MCAT  9  ECT2  6  
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RFC5  8  MND1  9  EEF1E1  6  

SHMT2  8  NCAPH  9  INHBA  6  

SUV39H2  8  NOP16  9  KIF23  6  

TNFSF9  8  PA2G4  9  MAD2L1  6  

TRIP13  8  PBK  9  MCM4  6  

TTK  8  PLK1  9  MELK  6  

UBE2S  8  PLK2  9  NCAPG2  6  

UNG  8  RNASEH2A  9  NEK2  6  

ZWINT  8  SNRPA1  9  NUSAP1  6  

AURKB  7  TYMS  9  ORC6  6  

C18orf25  7  ZWINT  9  PBK  6  

CASC5  7  ADNP2  8  RAD51AP1  6  

CDC25A  7  ANXA2P2  8  RAN  6  

CDCA3  7  AP1S3  8  RFC2  6  

CDK1  7  AURKB  8  CCNA2  5  

CENPK  7  C18orf25  8  CDC45  5  

CKS2  7  CBFA2T2  8  CDKN3  5  

DDX27  7  CDCA3  8  CEP55  5  

DNAJB4  7  CIB1  8  CHEK1  5  

JAM3  7  CKS2  8  DDB2  5  

KIF11  7  DBF4  8  DLGAP5  5  

KIF18B  7  DCUN1D5  8  DNAJC9  5  

KIF2C  7  DNMT1  8  DTL  5  

MCAT  7  DTYMK  8  DUSP4  5  

MDM2  7  EXO1  8  H2AFZ  5  

MELK  7  EXOSC3  8  KIF4A  5  
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MTFP1  7  FOXM1  8  MKI67  5  

ORC1  7  KIF11  8  MTHFD2  5  

PA2G4  7  KIF4A  8  POLE2  5  

PARPBP  7  LAMB3  8  PRC1  5  

PGP  7  MCM4  8  RRM2  5  

PHF20  7  MDM2  8  SMC4  5  

PLK4  7  MELK  8  TOP2A  5  

PRC1  7  MRPS12  8  UTP18  5  

PTRF  7  NDC1  8  VRK1  5  

RNF19B  7  NEK2  8  ASPM  4  

SFXN1  7  NUF2  8  CASC5  4  

SPC25  7  PAICS  8  CCNB1  4  

STIL  7  PARPBP  8  CCNB2  4  

TIMELESS  7  PRC1  8  CDK2  4  

TIMM13  7  PSMD14  8  CKS2  4  

TK1  7  PSMD9  8  DNMT1  4  

TMPO  7  RAD51AP1  8  FDXR  4  

TOP2A  7  RPS27L  8  FEN1  4  

TSPAN6  7  SOCS6  8  GINS2  4  

WDHD1  7  TK1  8  HAT1  4  

AAR2  6  TMPO  8  KIF11  4  

ACTL6A  6  TNFRSF10A  8  KIF20A  4  

AKT3  6  ZEB2  8  MAF  4  

AP1S3  6  AEN  7  NCAPH  4  

ARHGAP11A  6  ASPM  7  ORC1  4  

ARL4C  6  CACNG6  7  PARPBP  4  
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Gene Name Commonalities for 

all pathway 

members 

AURKA  6  CACYBP  7  PLK4  4  

BRCA1  6  CASC5  7  TK1  4  

BUB1B  6  CCNB2  7  WISP1  4  

C2orf47  6  CCT3  7  ZWINT  4  

CAND1  6  CDCA8  7  ANXA2P2  3  

CASQ2  6  CDCP1  7  C1QBP  3  

CDCA4  6  CHEK1  7  CDC25A  3  

CDCA8  6  COPS3  7  CDC25C  3  

CDKN1A  6  CPSF6  7  CDCA4  3  

CENPA  6  DDX27  7  CDCA8  3  

CENPM  6  DUSP4  7  CENPN  3  

CERCAM  6  ECT2  7  DEPDC1  3  

DEPDC1  6  FANCI  7  DSCC1  3  

DNA2  6  FBXO45  7  EXOSC3  3  

EEF1E1  6  FDXR  7  HSPA4L  3  

EMC8  6  FERMT2  7  KCTD9  3  

EPHA2  6  GINS2  7  KIF18A  3  

EXOSC3  6  GMPS  7  MDM2  3  

FAM46A  6  H2AFZ  7  NCAPD3  3  

FBXL7  6  INPP1  7  NUDT5  3  

FDXR  6  ITGB4  7  OIP5  3  

GINS1  6  KDSR  7  PTTG1  3  

GINS2  6  KIF18B  7  SHCBP1  3  

GMNN  6  KIF20A  7  SLC25A4  3  

H2AFZ  6  KITLG  7  SMC2  3  

HNRNPL  6  LAD1  7  TAF4  3  
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GSE14333-USA GSE14333-Melbourn GSE4183-Normal colon 

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities for all 

pathway members 

Gene Name Commonalities for 

all pathway 

members 

HSPE1  6  LIF  7  TUBB6  3  

INO80C  6  LIG1  7  TYMS  3  

ITGA5  6  MAGOHB  7  ZMAT3  3  

KIF20B  6  MBD2  7  NUP107  10  

LGALS1  6  MCM3  7  MCM7  9  

MAP1B  6  MCM5  7  FOXM1  8  

MCM2  6  MKI67  7  GINS1  8  

MCM5  6  MRTO4  7  KIF14  8  

MIS18A  6  MTHFD2  7  KPNA2  8  

MRPL19  6  MUC6  7  PHLDA1  8  

NCAPH  6  NME1  7  SKP2  8  

NDC80  6  NUSAP1  7  CDK4  7  

NMT1  6  OIP5  7  EZH2  7  

NRP1  6  PLIN3  7  GMPS  7  

NUF2  6  POLD2  7  GTF2E2  7  

OGFOD1  6  PRIM1  7  LIG1  7  

OLFML2B  6  RAB27B  7  LYAR  7  

PDLIM7  6  RBM28  7  NOP58  7  

PHF5A  6  RFC2  7  NUF2  7  

PMP22  6  RFC4  7  NUP205  7  

POLD2  6  RRM1  7  POLD2  7  

POLE2  6  SHCBP1  7  RUVBL1  7  

POLR2D  6  SPATA5L1  7  S100A11  7  

PRIM1  6  STIP1  7  UBE2C  7  

RAB27B  6  TIMELESS  7  ASF1B  6  

RAD51  6  TUBB  7  C1orf112  6  
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Gene Name Commonalities for 
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RAN  6  UBE2T  7  HJURP  6  

RRM2  6  WDTC1  7  KIF18B  6  

SHANK2  6  ZWILCH  7  NDC1  6  

SLC25A39  6  ADRBK1  6  SNRPA  6  

SNRPF  6  ALAS1  6  SPC25  6  

TP53RK  6  ANKRD39  6  TSR1  6  

TTPAL  6  ASF1B  6  ZWILCH  6  

UBE2C  6  AURKA  6  BID  5  

UQCC1  6  BRCA1  6  CENPA  5  

VGLL3  6  CCDC68  6  CENPK  5  

WDR12  6  CCT7  6  DTYMK  5  

YTHDF1  6  CDX2  6  FBL  5  

ZWILCH  6  CENPK  6  LATS2  5  

ADAMTS2  5  CEP68  6  MIS18A  5  

AEBP1  5  CKS1B  6  MRPL17  5  

AGR2  5  CLIP4  6  MRPS17  5  

ANGPTL1  5  CLPP  6  MRPS2  5  

ANXA2P2  5  DDB2  6  MRPS23  5  

ASPM  5  DDX54  6  NDC80  5  

BCL6  5  DHX9  6  PA2G4  5  

C11orf96  5  DSPP  6  PHLDA3  5  

CACNA2D1  5  DTL  6  POLR2D  5  

CCDC109B  5  E2F8  6  RRM1  5  

CD93  5  EFEMP1  6  SSRP1  5  

CDK2  5  EPHA2  6  TNFRSF10A  5  

CHSY1  5  EPS8L1  6  TRAP1  5  
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GSE14333-USA GSE14333-Melbourn GSE4183-Normal colon 

Gene Name Commonalities for 

all pathway 

members 
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pathway members 

Gene Name Commonalities for 

all pathway 
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CMC2  5  EWSR1  6  TTK  5  

CMTM3  5  EXOSC2  6  ADGRG1  4  

COL5A1  5  EZH2  6  ASCL2  4  

COL5A2  5  F3  6  AURKA  4  

COLEC12  5  FBXO22  6  C1D  4  

DBF4  5  FLII  6  CKAP2  4  

DCUN1D5  5  HAMP  6  DENND5A  4  

DDB2  5  HELLS  6  EMC8  4  

DDR2  5  HJURP  6  FANCD2  4  

DDX39A  5  HNRNPU  6  HMMR  4  

DGCR6L  5  IER3IP1  6  KIAA1524  4  

DHFR  5  IER5  6  MCAT  4  

DIDO1  5  KIF14  6  MRTO4  4  

DNTTIP1  5  KIF18A  6  NASP  4  

DTL  5  KNTC1  6  NCAPD2  4  

E2F8  5  LHFP  6  NDN  4  

ECE2  5  LINC00491  6  PGM2  4  

EHD4  5  LOC101928718  6  PSMD14  4  

EXO1  5  LOC728099  6  RBM28  4  

FAS  5  LRRC25  6  SLC7A11  4  

FECH  5  LRRC8A  6  TACC3  4  

FERMT2  5  MCM10  6  THY1  4  

FOXM1  5  MGP  6  TIE1  4  

GAS1  5  MSH2  6  TIMM50  4  

GPLD1  5  MTDH  6  TNFRSF12A  4  

HEG1  5  NCAPG2  6  TRIAP1  4  
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Gene Name Commonalities for 

all pathway 
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pathway members 

Gene Name Commonalities for 

all pathway 
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HELLS  5  NSDHL  6  B3GALT6  9  

HJURP  5  OBFC1  6  CCT3  9  

HMBS  5  ORC1  6  CMSS1  9  

HSPA4L  5  PAPPA  6  GPN3  9  

HSPD1  5  PCM1  6  ILF2  9  

IER3IP1  5  PGAM1  6  MSH6  9  

IFT52  5  PHF23  6  NUP155  9  

IL1R1  5  PHLDA2  6  PHF19  9  

ILF2  5  PLK4  6  ASUN  8  

INPP1  5  POLR3K  6  CEP78  8  

ISLR  5  PSMB6  6  FIGNL1  8  

KAT2B  5  RAD51  6  MTHFD1  8  

KCNF1  5  REEP4  6  NFE2L3  8  

KIF4A  5  RFT1  6  RIPK2  8  

KNSTRN  5  RNF126  6  UHRF1  8  

KRT3  5  RUVBL2  6  AJUBA  7  

LAMA3  5  SHB  6  C12orf10  7  

LAMB2  5  SKA1  6  CEMIP  7  

LHFP  5  SLC7A11  6  CKAP5  7  

LIN9  5  SNCA  6  CTPS1  7  

LSM4  5  SRPRB  6  DDIT4  7  

MAP7D1  5  STT3A  6  DNAJA3  7  

MCM3  5  SUV39H2  6  DUSP14  7  

MCM4  5  TIMM50  6  E2F7  7  

MFAP5  5  TIPIN  6  IARS  7  

MITF  5  TNFRSF10D  6  LONP1  7  
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GSE14333-USA GSE14333-Melbourn GSE4183-Normal colon 

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities for all 

pathway members 

Gene Name Commonalities for 

all pathway 
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MPHOSPH9  5  TOMM22  6  MRGBP  7  

MRPL17  5  TSFM  6  NTMT1  7  

MRPS34  5  TTK  6  PCNA  7  

NAP1L3  5  TUBA4A  6  PRPF4  7  

NCAPD3  5  UBE2M  6  RFC3  7  

NIFK  5  WDR12  6  TMEM161A  7  

NOP58  5  WDR34  6  TMEM97  7  

NUDT5  5  YEATS4  6  ABCA8  6  

NUSAP1  5  YWHAB  6  ABCC1  6  

ORC6  5  AAR2  5  ACD  6  

PCM1  5  ABAT  5  ACTR3B  6  

PDRG1  5  ACAT2  5  ADAMDEC1  6  

PES1  5  ADAMTS1  5  ADRM1  6  

PLAGL2  5  AGR2  5  ATP11A  6  

PLAUR  5  AHNAK2  5  C1orf216  6  

PLK1  5  AKAP12  5  CCDC59  6  

PLK2  5  ANKFY1  5  CCT6A  6  

PLK3  5  ANXA2P1  5  CENPH  6  

POFUT1  5  ANXA2P3  5  CNN2  6  

POLR1B  5  AOX1  5  CPSF3  6  

PPIL1  5  ARFGEF2  5  CSE1L  6  

PRRX1  5  ARHGAP11A  5  E2F6  6  

PSMD14  5  ATIC  5  FOXQ1  6  

PSMD9  5  BCCIP  5  FTSJ2  6  

PTGES3  5  BLOC1S2  5  GALK1  6  

PTTG1  5  C12orf10  5  ILF3  6  
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Gene Name Commonalities for 

all pathway 
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Gene Name Commonalities for all 

pathway members 

Gene Name Commonalities for 
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PUS1  5  C17orf51  5  IMPDH1  6  

QKI  5  CACNA2D1  5  IPO9  6  

RAB31  5  CAND1  5  IRAK2  6  

RARS  5  CBX3  5  KCTD18  6  

RASSF8  5  CDC25A  5  LOC101927253  6  

RFC2  5  CDC7  5  LOC102724156  6  

RFC4  5  CDK2  5  LPCAT1  6  

RNASEH2A  5  CDK4  5  MFSD11  6  

RPS27L  5  CDKN3  5  MRPL9  6  

SEC22B  5  CHAF1B  5  MTERF3  6  

SERPINF1  5  CHMP7  5  NAT10  6  

SET  5  CLECL1  5  PAPD4  6  

SHCBP1  5  CMSS1  5  PAXIP1  6  

SLF1  5  CTSE  5  PELO  6  

SNRPA  5  DDX23  5  PFKFB3  6  

SNRPD3  5  DIDO1  5  PHYKPL  6  

SNRPG  5  DMD  5  PIK3CG  6  

SPAG5  5  DMWD  5  PLCD1  6  

SPOCK1  5  DNA2  5  SLC4A4  6  

SSRP1  5  DONSON  5  SLC7A5  6  

SSTR5  5  DPM1  5  SLCO4A1  6  

STON1  5  DPYSL2  5  SND1  6  

TACC3  5  DPYSL3  5  TIMP1  6  

THBS2  5  EEF1E1  5  VARS  6  

TIMM21  5  EIF3I  5  ZNF367  6  

TLR3  5  ELAC2  5  ZNF593  6  
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Gene Name Commonalities for 
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TOR3A  5  EMC8  5  AATF  5  

TSPYL5  5  ERICH1  5  ACBD6  5  

TTI1  5  EZR  5  ACOT9  5  

TUBB6  5  FAM217B  5  ACTN1  5  

UBE2T  5  FANCD2  5  ADK  5  

WDR7  5  FANCE  5  ANKRD12  5  

WIBG  5  FARSA  5  ATAD2  5  

ZCCHC2  5  FAS  5  BCL2L12  5  

ZDHHC9  5  FBLN1  5  C2CD4A  5  

ZEB2  5  FBLN5  5  C2orf88  5  

ZFPM2  5  FBN1  5  C9orf16  5  

ZMAT3  5  FSTL1  5  CBFB  5  

ABAT  4  GAR1  5  CD276  5  

ABHD3  4  GJB3  5  CD44  5  

ACAT2  4  GNB4  5  CDCA2  5  

ADAMTS1  4  GRPEL1  5  CEBPB  5  

ADPRHL2  4  GSE1  5  CES2  5  

ADRA1D  4  HAT1  5  CHTF18  5  

AEN  4  HEG1  5  CNPY2  5  

AFG3L2  4  HLX  5  CRNDE  5  

ANGPTL2  4  HMMR  5  CXCL1  5  

ANKFY1  4  IFT52  5  CXCL16  5  

APOL1  4  IL1R1  5  DDX50  5  

ARFGAP1  4  INTS10  5  DHX30  5  

ASCL2  4  ISG20L2  5  DONSON  5  

ASF1B  4  ITGA3  5  E2F3  5  
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BASP1  4  KCNF1  5  EIF3B  5  

BCAT1  4  KIAA1462  5  ENC1  5  

BGN  4  KNSTRN  5  ENTPD5  5  

BICC1  4  KRT8  5  EXOSC8  5  

BID  4  LAMA3  5  FGD6  5  

BOC  4  LMNA  5  FIBP  5  

BVES  4  LMO7  5  GEMIN5  5  

C11orf95  4  LOC101929450  5  GRINA  5  

C18orf8  4  LOC102724434  5  HEATR1  5  

C1orf112  4  LOC105369167  5  HILPDA  5  

C1QBP  4  LOC105372881  5  HNRNPD  5  

C1R  4  LOC150005  5  LOC101929340  5  

C22orf31  4  LOC221122  5  MAD2L2  5  

C5AR1  4  MAP2K4  5  MAP4K4  5  

CACYBP  4  MED17  5  METTL7A  5  

CALD1  4  MIS18A  5  MSANTD3  5  

CCDC185  4  MORC4  5  MTFR2  5  

CCDC27  4  MPDU1  5  NANP  5  

CCDC34  4  MPDZ  5  NINJ1  5  

CCDC68  4  MRPL19  5  NOC3L  5  

CCNE2  4  MRPL3  5  NOC4L  5  

CCNF  4  MRPS16  5  OSBPL3  5  

CCNL1  4  MSRA  5  PFDN2  5  

CDC123  4  NDUFV2  5  PFKM  5  

CDC25C  4  NFE2L3  5  PLP1  5  

CDK14  4  NMT1  5  POLA1  5  
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CENPF  4  NOLC1  5  POLB  5  

CENPU  4  NOP58  5  POLD1  5  

CEP76  4  NOVA2  5  POLR1C  5  

CLIC4  4  NUP50  5  POP7  5  

CLTB  4  NXF1  5  PPP2R3A  5  

CNGB1  4  OR5L2  5  PRR7  5  

COL1A2  4  OSMR  5  PSRC1  5  

COL3A1  4  PDE1A  5  R3HDM1  5  

COL6A1  4  PDIA4  5  RBBP7  5  

COL6A2  4  PES1  5  RCN1  5  

COL6A3  4  PLA2G4A  5  RPP40  5  

COL8A1  4  PLAGL2  5  RRN3  5  

CPNE1  4  PLEKHN1  5  RRP1B  5  

CTGF  4  PMAIP1  5  SAP30  5  

CXXC1  4  POLA2  5  SCARA5  5  

CYR61  4  POP7  5  SF3B3  5  

CYSTM1  4  PPIF  5  SH3PXD2B  5  

DBI  4  PPP1CA  5  SHISA5  5  

DDX21  4  PSMC6  5  SKA3  5  

DDX54  4  PTRF  5  SLC3A2  5  

DENND5A  4  PTTG1  5  SLC6A6  5  

DLC1  4  QPRT  5  SMYD2  5  

DNAJC5  4  RAB11A  5  SNRPC  5  

DNMT1  4  RAD54L  5  SUPT16H  5  

DOCK5  4  RAE1  5  TALDO1  5  

DPM1  4  RBM15  5  TBC1D16  5  
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DSCC1  4  RPA1  5  TM2D2  5  

DSE  4  RRP9  5  TMEM185B  5  

DSG2  4  RUNX1T1  5  TMEM206  5  

DTYMK  4  RUVBL1  5  TNS4  5  

DUSP4  4  SARNP  5  TRIM28  5  

DZIP1  4  SDHB  5  VASN  5  

E2F3  4  SEMA5A  5  WDR3  5  

ECM2  4  SERPINF1  5  XPOT  5  

EFEMP2  4  SERPING1  5  ZMYND19  5  

EIF4G1  4  SFN  5  ZNF280C  5  

EIF6  4  SFRP2  5  ZNF623  5  

ERCC6L  4  SH3BGRL3  5  ZPR1  5  

ERI2  4  SLAMF6  5  ADAM10  4  

EZH2  4  SLBP  5  AGTRAP  4  

F12  4  SLC39A6  5  ARL6IP6  4  

FANCD2  4  SLC6A14  5  ARV1  4  

FBN1  4  SMARCA4  5  ASPHD1  4  

FDPS  4  SMC4  5  ATF1  4  

FLNA  4  SPAG7  5  ATG4A  4  

FLVCR1  4  SPAG8  5  ATL2  4  

FSTL1  4  SPARCL1  5  BRIX1  4  

GAS2  4  SPC25  5  BUB3  4  

GBP2  4  SPCS3  5  C4BPB  4  

GCN1  4  STIL  5  C4orf46  4  

GCSH  4  STX8  5  CAD  4  

GFPT2  4  SVEP1  5  CARNMT1  4  
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GGT5  4  SYT7  5  CCDC138  4  

GJB3  4  TAF4  5  CCDC86  4  

GLIS2  4  TAGLN  5  CDC25B  4  

GMPS  4  TCFL5  5  CDKN2B  4  

GNB4  4  THOC6  5  CENPW  4  

GPC6  4  TMEM151B  5  CETN2  4  

GREM2  4  TMEM160  5  CHGA  4  

GTF2A2  4  TNFRSF10B  5  CHP2  4  

GTF2IRD1  4  TNS1  5  CHSY1  4  

GTPBP4  4  TOP2A  5  CIRH1A  4  

H2AFX  4  TPX2  5  CLK1  4  

HAT1  4  TSPAN6  5  CMTR2  4  

HIST2H2AA3  4  TTF2  5  CNTN3  4  

HK2  4  TTLL12  5  COG6  4  

HMMR  4  TUBB6  5  COPS8  4  

HP  4  TUBG1  5  CXCL2  4  

HPSE  4  TVP23B  5  CXCL3  4  

HSPA9  4  UBA6  5  DCLRE1A  4  

HSPH1  4  UNG  5  DDIAS  4  

HTRA1  4  VPS37A  5  DIAPH3  4  

HUS1B  4  VPS37B  5  DIEXF  4  

IER5  4  YTHDF1  5  DLG5  4  

IGFN1  4  ZMAT3  5  DNAJC21  4  

INHBA  4  ZNF121  5  DOCK10  4  

INTS2  4  ZNF843  5  DYSF  4  

IWS1  4  ACACB  4  EDN3  4  
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JAK2  4  ACADVL  4  EFNA4  4  

KCNE4  4  ACSL6  4  ELF1  4  

KCNH5  4  ADSL  4  ENAH  4  

KCNT1  4  AEBP1  4  EPHX2  4  

KCTD5  4  AFAP1-AS1  4  EPHX4  4  

KCTD9  4  AGMAT  4  ETV4  4  

KDSR  4  AGPAT5  4  EXOSC5  4  

KIAA1524  4  AHR  4  FAAP20  4  

KIAA1644  4  AK2  4  FAM83D  4  

KIF15  4  AKT3  4  FANCG  4  

KIF1C  4  AMD1  4  FARSA  4  

KIF20A  4  AMPH  4  FBRSL1  4  

KIF22  4  ANKRD40  4  FBXO5  4  

KIFC1  4  ANKRD49  4  FGD5  4  

KLHDC1  4  ANO1  4  FGFR2  4  

KLHL5  4  ANTXR2  4  G6PD  4  

KLK13  4  ANXA1  4  GART  4  

KNTC1  4  ANXA10  4  GCNT3  4  

LAMA4  4  AOC3  4  GDF15  4  

LAYN  4  APEH  4  GEMIN2  4  

LDB2  4  ARHGEF6  4  GGTA1P  4  

LGALS3BP  4  ARL4C  4  GIMAP4  4  

LLPH  4  ASAH1  4  GLG1  4  

LMNB1  4  ASUN  4  GMCL1  4  

LOC100129476  4  ATAD1  4  GOLGA2P5  4  

LOC100506142  4  ATG101  4  GRIN2D  4  
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all pathway 

members 

LOC101927040  4  ATP8B2  4  HAUS6  4  

LOC101929144  4  ATP9A  4  HDAC2  4  

LOC340107  4  AXIN2  4  HNRNPH3  4  

LOX  4  AXL  4  HPGDS  4  

LOXL1  4  BCL10  4  IER3  4  

MBD2  4  BCL6  4  IFITM2  4  

MCMBP  4  BHMT2  4  IFITM3  4  

ME2  4  BNC2  4  IL1RN  4  

MED20  4  BTNL9  4  IL6  4  

MEIS1  4  C10orf10  4  INTS5  4  

MLLT11  4  C10orf2  4  IPO5  4  

MMP24-AS1  4  C19orf33  4  JAG2  4  

MORN1  4  C19orf84  4  KCMF1  4  

MRC2  4  C3orf52  4  KCTD20  4  

MRPL14  4  CALCOCO1  4  KDM1A  4  

MRPL35  4  CALD1  4  KIF15  4  

MRPL37  4  CAMTA2  4  KIFC1  4  

MRPL46  4  CAPG  4  KLK11  4  

MRPS27  4  CCAR2  4  LAS1L  4  

MXD1  4  CCDC80  4  LGR5  4  

MXRA5  4  CCDC88A  4  LIN7C  4  

NCAPG  4  CCNE2  4  LOC440792  4  

NCAPG2  4  CD55  4  LPAR6  4  

NDN  4  CDC27  4  LPGAT1  4  

NEK4  4  CDC42EP1  4  MAP4K3  4  

NFE2L1  4  CDCA4  4  MED27  4  
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GSE14333-USA GSE14333-Melbourn GSE4183-Normal colon 

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities for all 

pathway members 

Gene Name Commonalities for 

all pathway 

members 

NNMT  4  CDH22  4  MLST8  4  

NOL4L  4  CDK14  4  MORC4  4  

NOTCH3  4  CEBPZ  4  MPEG1  4  

NRBF2  4  CENPN  4  MYC  4  

NTM  4  CEP78  4  NBEAL2  4  

NUAK1  4  CFAP20  4  NHP2  4  

NUP107  4  CLEC1A  4  NLE1  4  

NUP205  4  CNOT7  4  NUDT1  4  

NUP37  4  COL14A1  4  NXT1  4  

NUTF2  4  COL6A2  4  ORC2  4  

OR10H1  4  COX7A1  4  OSTM1  4  

OSER1  4  CPSF3L  4  OTUB2  4  

PAK6  4  CRIP1  4  OXR1  4  

PCDH7  4  CRISPLD2  4  PADI2  4  

PDGFC  4  CRYAB  4  PAK1IP1  4  

PDLIM2  4  CRYZ  4  PCDH19  4  

PDLIM3  4  CSGALNACT2  4  PDCD2L  4  

PHLDA1  4  CTGF  4  PFAS  4  

PHLDA2  4  CX3CR1  4  PHC2  4  

PIGW  4  CXCL16  4  PHF3  4  

PKD2  4  CYP1A1  4  PLXNA1  4  

PKP2  4  CYR61  4  POLR1E  4  

PLCG1  4  CYSTM1  4  PPIH  4  

PLCL2  4  D21S2088E  4  PPP1CC  4  

PLXNB2  4  DCLK1  4  PPP4R3B  4  

PNPT1  4  DDR2  4  PRDX1  4  
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GSE14333-USA GSE14333-Melbourn GSE4183-Normal colon 

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities for all 

pathway members 

Gene Name Commonalities for 

all pathway 

members 

POGK  4  DIP2B  4  PRIMPOL  4  

POLDIP2  4  DYM  4  PTAFR  4  

POLQ  4  ECM2  4  PTCD3  4  

POLR2E  4  EFEMP2  4  PTPN22  4  

PPDPF  4  EIF3D  4  PTRH2  4  

PPIF  4  EPM2AIP1  4  PUS1  4  

PPP1CA  4  EPOR  4  PUS7  4  

PPP1R18  4  ESCO2  4  PXMP2  4  

PPP1R3D  4  ETV5  4  RAD23A  4  

PRLR  4  FAM129B  4  RBL2  4  

PRPF31  4  FAM160B2  4  RCC1  4  

PSMA1  4  FANCA  4  RILPL2  4  

PSMA4  4  FANCF  4  RNF38  4  

PSMB3  4  FBXL7  4  RPL22L1  4  

PSMD12  4  FEM1A  4  RRP9  4  

PSMD13  4  FEZ1  4  RSL1D1  4  

PTGFRN  4  FGF13-AS1  4  SAPCD2  4  

QPRT  4  FGFR1  4  SATB2  4  

RAE1  4  FH  4  SEMA6A  4  

RAI14  4  FHL1  4  SENP6  4  

RANGAP1  4  FKBPL  4  SHB  4  

RBM12  4  FLI1  4  SHPRH  4  

RCN3  4  FLVCR1  4  SLC29A1  4  

RGS2  4  FMO2  4  SLC9A9  4  

RGS4  4  FOXD1  4  SMOX  4  

RHOF  4  GAS1  4  SNTB1  4  
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GSE14333-USA GSE14333-Melbourn GSE4183-Normal colon 

Gene Name Commonalities for 

all pathway 

members 

Gene Name Commonalities for all 

pathway members 

Gene Name Commonalities for 

all pathway 

members 

RHOQ  4  GBX2  4  SOCS3  4  

RNF34  4  GEM  4  SPOPL  4  

RPRD1B  4  GFRA1  4  SRP9  4  

RTN4IP1  4  GLOD4  4  SSX2IP  4  

S100A11  4  GNAO1  4  STMN1  4  

SAC3D1  4  GPR22  4  STX12  4  

SARNP  4  GPR26  4  TAF1A  4  

SART3  4  GSR  4  TEAD4  4  

SCARB1  4  GTF2E2  4  TESC  4  

SDC2  4  GTF2F1  4  TEX10  4  

SDF2L1  4  GYPC  4  TLK1  4  

SERINC3  4  HDAC1  4  TM7SF3  4  

SERPINH1  4  HNRNPK  4  TMEM147  4  

SGCB  4  HSPA9  4  TMEM72  4  

SLC22A6  4  HSPB7  4  TPD52L2  4  

SLC24A4  4  HSPE1  4  TRAF3IP3  4  

SLC35C2  4  HTR1E  4  TRAPPC13  4  

SLC39A6  4  IBTK  4  TRBC1  4  

SLC9A1  4  ICT1  4  TRMT13  4  

SLIT3  4  IFRD2  4  TSPAN7  4  
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Complete Tables for Comparative Analysis in Chapter 5  
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TCGA-COADREAD Project    

Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

ADNP  5  2.007E 

-11  

TCGA-Colorectal- 

WTTP53  

Frequency  Pvalue  TCGA-

ColorectalMutantTP53  

Frequency  Pvalue  

AURKA  8  1.46E- 

06  

BOLA3  6  0.0450525  C5orf41  9  0.0035 

863  

AURKB  6  0.0024 

815  

CBFA2T2  5  7.825E-08  CHAF1B  8  0.0339 

956  

BUB1B  6  0.0151 

441  

CHD6  5  8.831E-08  ERCC6L  8  0.0040 

474  

CCDC8 

6  

5  0.0035 

881  

DZIP1  5  0.0032789  KIAA0101  8  0.0014 

184  

CCNA2  8  0.0099 

209  

POP5  5  0.0005303  SERINC1  7  0.0182 

255  

CCNB2  6  0.0366 RPL22L1  5  5.319E-20  TRAIP  7  0.0337 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

538  73  

CCT2  7  0.0068 

801  

AP1S3  5  0.0020607  AURKAIP1  6  0.0007 

656  

CDC20  5  0.0023 

573  

ARHGEF11  6  0.0321763  BMPR2  6  0.0023 

833  

CDCA5  8  0.0402 

606  

CDCA2  5  1.188E-07  CLCN7  6  2.075E 

-14  

CDCA8  5  0.0352 

498  

EIF2S1  5  0.0011267  KIF20A  6  0.0447 

28  

CDKN3  5  0.0361 

064  

GEMIN7  6  0.0059802  MYBL2  6  1.089E 

-08  

DBF4  5  0.0294 

442  

GPX1  5  0.0220624  NAP1L3  6  0.0384 

559  

DSCC1  7  0.0009 KIAA2026  5  0.0015767  PGAM5  6  0.0264 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

823  906  

E2F1  8  1.039E 

-07  

LOC647979  5  1.797E-14  PGR  6  0.0180 

103  

FAM54 

A  

7  0.0426 

078  

NR3C2  6  0.0020093  PSAT1  6  0.0350 

036  

FANCB  6  0.0093 

759  

PBK  7  2.044E-10  RAB27A  6  2.732E 

-06  

H2AFZ  5  0.0002 

19  

PCDH19  5  0.0005507  RAD51  6  0.0172 

153  

KIF4A  6  0.0023 

102  

PHF20  5  9.626E-13  RIF1  6  0.0451 

558  

MND1  7  0.0366 

204  

POFUT1  5  3.466E-11  SECISBP2L  6  0.0013 

716  

NUP37  7  0.0212 

674  

RNF19B  5  3.396E-07  TELO2  6  0.0256 

418  
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

ORC1L  6  0.0320 

302  

SKA1  6  0.0001044  ZBTB4  6  0.0140 

555  

ORC6L  8  0.0029 

739  

AEN  5  4.063E-11  ACD  5  2.142E 

-05  

PA2G4  7  0.0294 

297  

AKAP13  5  0.0130803  ATP5F1  5  2.692E 

-05  

PNPT1  8  0.0124 

803  

ASH1L  5  0.0088427  BOC  5  0.0033 

615  

RAN  6  0.0062 

796  

ATP5A1  5  1.143E-18  BRCA1  5  0.0089 

958  

RCC1  5  0.0281 

494  

ATRX  5  0.0010952  C13orf33  5  0.0190 

404  

RFC4  7  0.0316 

941  

BAT2  6  0.0153324  C17orf86  5  7.316E 

-06  

RFC5  8  0.0190 

186  

C15orf23  7  0.0177738  CBX7  5  0.0139 

492  



 

234 

Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

RRM2  7  0.0075 

561  

C3orf26  7  0.0142335  CCDC150  5  0.0025 

827  

SKA3  5  9.956E 

-07  

C4orf46  6  0.0372259  CDK10  5  0.0050 

387  

SNRPF  6  0.0324 

8  

C6orf120  5  0.0183539  CENPI  5  0.0415 

519  

SPC25  7  0.0422 

415  

CCDC8  5  0.0326559  CHPF  5  0.0062 

187  

TPX2  6  3.767E 

-07  

CDKN1A  5  3.352E-13  DUSP4  5  7.09E- 

13  

TTK  6  0.0210 

373  

CEBPB  5  2.696E-08  ECT2  5  0.0428 

281  

UBE2C  9  2.423E 

-08  

CENPM  5  0.0019845  EDEM3  5  0.0001 

448  

XRCC2  

  

6  

  

0.0003 

146  

COPE  5  0.0065805  EVC2  5  0.0387 

312  
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

  

      DDAH2  6  3.618E-06  FCHO2  5  0.0009 

199  

      DLGAP5  5  0.0020723  GFI1  5  1.474E 

-07  

      DPY19L4  5  2.186E-07  GOLPH3L  5  7.392E 

-06  

   EFNA4  5  0.0235435  KIF11  5  0.0337 

183  

     EFS  5  0.0240362  KIF15  5  0.0109 

783  

      ERH  6  0.0024016  LENG8  5  0.0013 

141  

      FASTKD1  5  0.0243502  LIMA1  5  3.326E 

-09  

      FBXO5  5  0.0026209  MAP3K3  5  0.0079 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

33  

      FDXR  8  4.772E-18  MTHFD2  5  0.0020 

327  

      HECA  5  2.002E-05  NCAPD3  5  0.0244 

773  

      HNRNPC  5  7.563E-07  NCAPG2  5  0.0015 

963  

      KIAA0182  5  0.0280741  OGFR  5  3.816E 

-05  

      KIAA0240  5  7.369E-05  PEG3  5  0.0199 

2  

      MCM7  5  0.0170605  PHLDA1  5  0.0006 

578  

      MDM2  6  6.77E-31  PIK3CA  5  0.0003 

526  

      MLL3  5  0.0340408  POC1A  5  0.0364 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

815  

      MPDU1  5  1.987E-21  PRC1  5  0.0421 

074  

      MRPL35  5  5.25E-05  PRDM6  5  0.0083 

925  

      NIPBL  5  0.0117857  PRICKLE1  5  0.0072 

093  

      PRMT1  6  0.0006633  SETD1A  5  5.104E 

-05  

      PSMA3  6  0.01839  SGOL2  5  0.0194 

816  

      PSMA6  5  0.0005269  SHMT2  5  6.085E 

-05  

      PSME2  5  9.399E-05  TACC3  5  0.0149 

187  

      RPAP3  5  0.0267138  TOP2A  5  0.0133 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

41  

      RPS27L  7  5.028E-27  TXLNA  5  0.0042 

055  

      RUVBL2  7  0.0007353  XPOT  5  0.0038 

467  

   SLC25A22  5  0.0198328  ZEB1  5  0.0019 

442  

     SNRPD1  5  5.039E-05  ZFYVE1  5  0.0346 

335  

      SNX30  6  0.0161471  ZGPAT  5  

  

1.721E 

-13  

      SP4  5  0.0191079  MDM2    6.77E- 

31  

      SPATA18  5  8.302E-43  DDB2    1.016E 

-25  

      TIPIN  5  0.0013685  FAS    8.31E- 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

22  

      TNFRSF10B  7  3.114E-10  CDKN1A    3.352E 

-13  

      TNFSF9  7  4.251E-11  ZMAT3    1.821E 

-12  

      TOMM22  5  0.0065802  SIAH1    2.3E- 

10  

      TRIAP1  7  2.486E-10  TNFRSF10B    3.114E 

-10  

      UBE2N  7  0.0032433  BAX    3.306E 

-10  

      UBL3  5  2.863E-08  CCNG1    2.395E 

-07  

      UQCRFS1  5  1.558E-06  RPRM    4.788E 

-07  

      UQCRQ  5  0.0139214  CASP3    7.635E 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

-07  

      WARS  5  0.0058847  ATR    8.533E 

-07  

      ZNF445  5  0.0040042  BCL2L1    1.925E 

-06  

      ZZEF1  6  

  

0.0002679  GADD45A    2.917E 

-06  

      DDB2    6.77E-31  TP53    1.496E 

-05  

      FAS    1.016E-25  PPM1D    4.132E 

-05  

      ZMAT3    8.31E-22  BBC3    7.902E 

-05  

      SIAH1    3.352E-13  BCL2    0.0002 

18  

      BAX    1.821E-12  ATM    0.0003 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

136  

      CCNG1    2.3E-10  TP53AIP1    0.0003 

465  

   RPRM   3.114E-10  CDKN2A   0.0006 

674  

     CASP3    3.306E-10  PIGS    0.0009 

318  

      ATR    2.395E-07  STEAP3    0.0013 

274  

      BCL2L1    4.788E-07  TSC2    0.0026 

156  

      GADD45A    7.635E-07  SESN1    0.0032 

972  

      TP53    8.533E-07  SFN    0.0097 

301  

      PPM1D    1.925E-06  APAF1    0.0111 
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

702  

      BBC3    2.917E-06  GADD45B    0.0130 

177  

      BCL2    1.496E-05  GADD45G    0.0220 

574  

      ATM    4.132E-05  RRM2B    0.0435 

826  

      TP53AIP1    7.902E-05  PERP  

  

  0.0480 

771  

  

      CDKN2A    0.000218        

      PIGS    0.0003136        

      STEAP3    0.0003465        

      TSC2    0.0006674        

      SESN1    0.0009318        

      SFN    0.0013274        
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Concor dant 

predict ors 

for both cohorts 

Frequency P- 

Value 

Unique 

Predictors 

 Unique 

predictors 

   

      APAF1    0.0026156        

      GADD45B    0.0032972        

      GADD45G    0.0097301        

      RRM2B    0.0111702        

      PERP  

  

  0.0130177        

          0.0220574        

          0.0435826        

     0.0480771     
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TCGA-STAD Project  

          

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

BUB1  1.3425E-51  EXO1  9  3.5567E-06  SNORD115-17  19  4.6176E-39  

CDCA8  7.7448E-50  CCNA2  8  3.0602E-12  BARX1  17  5.4463E-16  

CDCA3  4.1505E-41  CENPA  8  3.9839E-09  MUC13  16  2.7321E-47  

POLE2  1.0669E-49  DSCC1  8  3.6864E-33  TUBG2  16  9.6025E-43  

CENPF  1.818E-58  DTL  8  1.2968E-17  ADCY8  15  6.0706E-41  

FOXM1  5.1384E-43  ERCC6L  8  1.074E-43  FERMT1  14  3.7921E-38  

FAM54A  1.5191E-49  KIF18B  8  5.2841E-06  SNORD115-41  13  3.1906E-46  

CDCA2  6.0297E-33  MAD2L1  8  1.5134E-10  FLJ42393  13  1.3841E-45  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

CASC5  4.1383E-50  ORC1L  8  2.003E-36  CNPY2  13  7.1919E-42  

C12orf48  6.8986E-45  PRIM1  8  4.4905E-13  GRINA  13  1.035E-40  

BUB1B  1.3428E-50  RFC3  8  0.00418791  TRIM15  12  8.3554E-47  

NCAPH  3.4128E-46  RNF150  8  0.01926792  TCEA2  12  4.5471E-45  

RRM2  4.1269E-35  SPAG5  8  3.2241E-15  SNORD29  12  1.8176E-33  

UBE2C  4.0639E-62  TRIP13  8  2.3199E-10  LPP  12  1.5986E-32  

CCNF  3.7804E-23  TROAP  8  6.0609E-05  SNORA36C  12  2.1564E-13  

NCAPG  4.0629E-48  AHCTF1  7  7.4581E-17  ZNF559  11  4.8751E-46  

CDC25C  2.2008E-29  ATP8B2  7  1.3856E-15  ESRP1  11  1.0525E-45  

SKA1  2.3217E-34  AURKA  7  0.00026095  FA2H  11  2.0893E-45  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

CDC20  1.1016E-40  C10orf72  7  0.00046173  TRIM31  11  4.3576E-43  

CDCA5  2.4148E-31  C11orf82  7  1.5658E-06  VEGFB  11  1.0008E-39  

FBN1  2.8004E-11  C1orf112  7  5.4377E-06  GPR35  11  1.5679E-39  

GSG2  6.5295E-41  C21orf45  7  1.9437E-19  AGR2  11  1.0475E-30  

NEK2  1.6142E-36  CCNB2  7  1.7886E-15  FBLL1  11  1.967E-30  

PRR11  1.8375E-44  CDC25A  7  7.3221E-30  BNIPL  11  4.7807E-11  

CENPO  5.2289E-44  CDC45  7  2.743E-23  CLSPN  10  6.4374E-47  

NUF2  1.5191E-49  CDC6  7  2.4441E-12  C1orf106  10  3.9807E-46  

CCNB1  6.0297E-33  CENPL  7  3.0756E-05  TMC5  10  2.3672E-45  

HJURP  4.1383E-50  EPHA2  7  4.0178E-09  DNAJB12  10  6.0657E-44  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

KIF23  6.8986E-45  FXYD6  7  2.401E-13  OPA3  10  5.0223E-43  

KIFC1  1.3428E-50  KIF18A  7  5.4225E-09  OPA1  10  1.9116E-40  

POLQ  3.4128E-46  KIF2C  7  6.5373E-05  ZNF720  10  5.5681E-37  

PRC1  4.1269E-35  MELK  7  2.3731E-19  GPR78  10  9.6146E-37  

RAD51AP1  4.0639E-62  MPDZ  7  1.3125E-29  CDCA7  10  5.2396E-32  

RAD54L  3.7804E-23  OIP5  7  7.5097E-12  CXCL3  10  2.1508E-28  

CENPE  4.0629E-48  ORC6L  7  1.3327E-28  CELF4  10  1.3186E-27  

CHEK1  1.3425E-51  PLK4  7  5.2521E-29  BCL2L15  10  1.7917E-27  

DNA2  7.7448E-50  RACGAP1  7  2.7876E-49  ZBTB20  10  1.6843E-26  

EVPL  4.1505E-41  RAD51  7  1.3041E-16  SLC6A13  10  4.2531E-26  

HMMR  1.0669E-49  RUNX1T1  7  3.7998E-23  CCL11  10  1.3525E-17  

SASS6  1.818E-58  SGOL1  7  2.3999E-19  KRT31  10  1.4111E-10  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

UBE2T  5.1384E-43  SKA3  7  3.9173E-12  DMRTC1  10  1.2485E-24  

ASPM  6.0297E-33  SPC25  7  9.2596E-19  C9orf119  10  1.8371E-05  

CKAP2L  4.1383E-50  STON1  7  3.1914E-11  POU2F1  9  3.5411E-47  

FBXO5  6.8986E-45  TPX2  7  1.816E-13  C6orf222  9  1.5265E-45  

KIF15  1.3428E-50  TTK  7  6.076E-07  POF1B  9  5.3732E-40  

SERPINB5  3.4128E-46  WDR67  7  5.9215E-23  ZNF2  9  1.5978E-39  

WDHD1  4.1269E-35  ZNF644  7  3.2632E-08  PITX1  9  7.8332E-39  

    ANXA2  6  1.0235E-36  BCL11B  9  1.0066E-38  

    BCL7C  6  1.0059E-45  TAOK2  9  2.3023E-38  

    BDP1  6  1.5035E-31  GATA6  9  2.446E-38  

    BLM  6  0.00054978  LOC84856  9  2.6701E-38  

    BTAF1  6  2.9414E-09  TSPAN8  9  2.2564E-37  

    C15orf42  6  0.00018525  LRRC48  9  1.8087E-34  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    C1orf135  6  0.00860724  MDH1B  9  4.4628E-29  

    CASP8AP2  6  5.9829E-11  SFTPD  9  3.0273E-25  

    CCDC138  6  5.1128E-12  SNHG11  9  4.1411E-19  

    CCDC150  6  0.04621805  HIC1  9  9.4137E-19  

    CCNT2  6  0.03360658  PPOX  9  0.00148945  

    CEP97  6  4.3642E-05  ASPN  9  2.3248E-05  

    CHAF1B  6  0.00097938  RADIL  9  2.3322E-23  

    CKS2  6  0.04062223  GPR171  9  3.2166E-23  

    CSE1L  6  0.0029036  C12orf27  8  3.2523E-47  

    DCLK2  6  5.4898E-37  ELF3  8  2.6513E-46  

    DHX9  6  0.00146327  FLJ44635  8  3.7368E-46  

    DPYSL3  6  1.6065E-21  PRR15L  8  8.625E-46  

    DSG3  6  9.4541E-13  MNX1  8  1.5628E-45  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    E2F1  6  3.4929E-14  PRSS3  8  2.1824E-45  

    EZH2  6  4.597E-11  NFU1  8  5.9333E-45  

    FAM108C1  6  7.9129E-15  HIST1H4C  8  1.6259E-43  

 
  FAM72B  6  4.778E-07  GOLPH3L  8  3.232E-42  

    FAM83H  6  1.4601E-11  FOXQ1  8  4.2607E-42  

    FANCI  6  3.7976E-12  KDM4DL  8  7.7557E-42  

    FBXL7  6  1.987E-09  GNPTG  8  1.4829E-40  

    FEN1  6  1.0691E-16  CEP55  8  1.6875E-40  

    FERMT2  6  1.0757E-09  DEPDC1B  8  3.4576E-38  

    FOXN2  6  0.00052984  SF3B14  8  9.6828E-37  

    GGT5  6  0.00015326  CENPV  8  1.9124E-34  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    KANK2  6  1.2938E-14  DSG2  8  2.088E-33  

    KIAA1731  6  0.00019819  CAPSL  8  1.4321E-32  

    KIF11  6  3.4725E-07  SCGB1D2  8  6.4631E-31  

    KIF20A  6  7.7591E-19  HELB  8  4.4826E-29  

    KNTC1  6  1.5722E-13  ANXA3  8  2.4519E-28  

    KPNA2  6  0.00186681  GPRC5A  8  2.5052E-27  

    LAD1  6  3.4488E-33  C8orf80  8  3.0975E-25  

    MAP3K12  6  3.2903E-13  CASP10  8  6.2941E-22  

    MAPK10  6  0.0302039  GABRQ  8  1.0238E-20  

    MATR3  6  3.0935E-14  DDX25  8  1.3253E-20  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    MCM6  6  8.201E-17  FKBP10  8  4.3482E-14  

    MPHOSPH9  6  5.144E-06  CRYGS  8  2.2736E-12  

    MSRB3  6  1.2572E-12  MAGED4  8  7.9111E-11  

    MYSM1  6  0.00733228  PDZD4  8  1.3295E-06  

    NPAT  6  2.3334E-10  RIC3  8  4.2531E-26  

    NUSAP1  6  1.2112E-11  GABRG3  8  9.7292E-11  

    PHLDA2  6  0.00177364  HNF4A  7  5.3201E-47  

    PIKFYVE  6  1.349E-23  GOLGA1  7  2.076E-46  

    PKP3  6  2.2175E-32  NRARP  7  3.3828E-46  

    PRKD1  6  3.1931E-20  ONECUT2  7  4.4355E-46  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    PRR24  6  1.095E-17  SPINT1  7  6.3069E-45  

    RALY  6  0.00140715  HMGCLL1  7  1.1656E-44  

    RANBP2  6  3.229E-13  HMG20A  7  1.2345E-43  

    RECK  6  3.0064E-15  SHROOM3  7  1.939E-42  

    RFC5  6  5.2101E-42  CHST1  7  1.0848E-41  

    RIF1  6  5.9681E-15  NKIRAS1  7  6.7645E-40  

    SETBP1  6  1.1133E-10  ANKS4B  7  1.2544E-39  

    SGOL2  6  1.5177E-06  SNORD127  7  3.9725E-39  

    SLIT2  6  1.0943E-36  C11orf2  7  1.217E-37  

    SYNE1  6  9.3895E-35  SEL1L3  7  1.4377E-37  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

 
  TIMELESS  6  1.6328E-37  DNAJC3  7  1.9359E-36  

    TNS1  6  8.0724E-17  FAM83B  7  2.844E-35  

    TOP2A  6  6.9523E-08  SNX22  7  4.8823E-35  

    TRAIP  6  5.893E-08  SEMA4G  7  5.8881E-35  

    UHMK1  6  1.7527E-37  SNORD116-25  7  9.3654E-35  

    UHRF1  6  3.0294E-25  PIP5K1B  7  1.1898E-34  

    USP24  6  0.01024892  CAPN8  7  3.0244E-34  

    XPO1  6  9.5331E-07  ZCCHC3  7  2.7735E-33  

    ZC3H11A  6  7.866E-21  SLC22A17  7  7.9259E-33  

    ZCCHC24  6  4.9497E-38  PKP2  7  2.487E-32  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    ZWINT  6  7.179E-30  C10orf119  7  7.5345E-31  

    CCNE1  6  7.1464E-17  ADAMTS6  7  3.9704E-30  

    CDK1  6  5.5099E-26  FAM128B  7  6.615E-30  

    ABCC9  5  0.00432291  SLC41A2  7  1.1447E-29  

    ADAMTSL3  5  6.4158E-23  TRAM1L1  7  9.5035E-28  

    ADAT2  5  2.5421E-11  TRIM47  7  2.6082E-25  

    AKT3  5  2.8481E-19  SRPK1  7  8.2622E-25  

    ALS2CL  5  6.6737E-12  SMYD5  7  8.1796E-22  

    ANGPTL1  5  0.0040671  DNAJB2  7  5.4576E-20  

    ANK2  5  8.5208E-05  C2orf62  7  1.5875E-18  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    ANXA2P2  5  3.69E-19  REL  7  2.1304E-18  

    ARHGAP20  5  2.9075E-09  SLC37A1  7  2.7649E-18  

    ATAD2  5  2.3061E-19  ANKRD36BP1  7  1.2305E-16  

    AXL  5  1.0266E-08  PEX1  7  3.2951E-11  

    B3GALNT2  5  9.0829E-26  PTTG1  7  1.3739E-09  

    BIRC5  5  2.5043E-32  FANCA  7  7.9661E-09  

    BOC  5  9.0569E-19  XAGE1D  7  9.1804E-07  

    BRCA1  5  0.00126478  COTL1  7  1.0145E-06  

    BRIP1  5  2.0437E-07  FILIP1  7  1.1302E-21  

    C17orf53  5  1.2002E-17  NTF4  7  7.4178E-41  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    C1R  5  1.1896E-05  SGCD  7  3.8894E-11  

    C1S  5  3.9476E-10  GINS4  7  6.681E-06  

    CALD1  5  1.0098E-19  SAMHD1  7  2.3318E-05  

    CAND1  5  9.3314E-05  OR4C16  7  1.1716E-35  

    CAPN1  5  1.2843E-06  IFFO1  6  7.3575E-47  

    CCDC14  5  0.01638143  ANKRD9  6  8.9441E-47  

    CDCP1  5  1.924E-05  EPS8L3  6  9.9547E-47  

    CDKN3  5  1.3254E-25  RPS18  6  2.8607E-45  

   CDS1  5  1.6298E-12  MAPK11  6  7.4859E-45  

    CEP350  5  4.0984E-07  E2F8  6  7.5018E-45  

    CLIP3  5  1.0928E-17  PLS1  6  8.8202E-45  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    COMMD4  5  0.03936823  UBXN6  6  1.7729E-44  

    DENND4A  5  0.00057595  PFDN5  6  1.936E-43  

    DEPDC1  5  2.498E-27  PRR15  6  4.8833E-43  

    DLGAP5  5  1.1943E-30  MGC4473  6  5.2237E-43  

    E2F7  5  1.0429E-20  GLTP  6  1.4716E-42  

    EFEMP1  5  3.8094E-07  ARHGAP28  6  5.8891E-41  

    ELMO3  5  3.8566E-40  HNF1A  6  1.2334E-40  

    EME1  5  9.0187E-15  PKNOX2  6  5.3636E-40  

    EPS8L2  5  0.0008603  PLA2G2C  6  2.2035E-39  

    ESCO2  5  3.0771E-34  STK24  6  4.277E-39  

    EVC  5  2.0042E-09  OVOL2  6  8.8004E-39  

    EXOSC8  5  0.00256876  MRPL46  6  1.3429E-38  

    FAM72A  5  1.2749E-13  RBM14  6  1.553E-38  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    FANCD2  5  0.01404021  KHDRBS3  6  4.1225E-38  

    FBXO11  5  0.00175176  FUT2  6  7.743E-38  

    FGFR1  5  2.4301E-11  ZWILCH  6  1.9536E-37  

    FOSL1  5  4.2275E-09  ZNF460  6  2.7617E-36  

    FRMD6  5  2.0781E-43  ZNF799  6  9.0052E-36  

    GALNT3  5  1.0705E-09  TTTY3B  6  1.3485E-35  

    GAS1  5  0.0205668  C8orf42  6  1.4534E-34  

    GINS1  5  3.7888E-05  TEF  6  4.4741E-34  

    GINS2  5  1.2702E-06  PCP4L1  6  4.9315E-33  

    GJB3  5  1.0711E-06  SMCR7L  6  1.063E-32  

    GLI3  5  2.4419E-16  MB  6  3.1442E-32  

    GNAO1  5  2.8509E-07  AMY1A  6  6.3201E-32  

    GSN  5  9.9467E-13  C20orf30  6  5.1127E-31  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    IL1R1  5  1.3111E-05  REV1  6  9.3997E-31  

    ITGA2  5  0.04833419  PATL1  6  3.6803E-30  

    ITGB4  5  0.04165069  ZMAT1  6  4.2243E-30  

    JAM3  5  0.02368976  SMARCAL1  6  1.3066E-29  

    ZNF192  5  0.00023229  ARL16  6  1.9579E-29  

    ZNF195  5  2.1564E-13  DIAPH3  6  2.4625E-29  

    ZNF638  5  9.2373E-05  TDG  6  5.0359E-29  

    ATR  5  1.5518E-13  BCL2L14  6  2.7828E-28  

    CHEK2  5  0.00033494  KRTAP4-9  6  3.5319E-28  

   PERP  5  3.0984E-07  NCRNA00116  6  1.2253E-27  

          BDH1  6  7.6676E-27  

          GPD2  6  1.0258E-26  

          HBZ  6  3.4249E-26  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          BARD1  6  5.1906E-26  

          INHBA  6  1.0339E-25  

          SLCO4A1  6  1.2793E-24  

          KIF4B  6  3.1471E-24  

          ZNF121  6  1.6912E-23  

          LOC678655  6  3.8078E-23  

          MXRA5  6  5.4158E-23  

          PAR-SN  6  6.495E-23  

          FOXF1  6  4.6164E-22  

          RNFT1  6  1.8735E-21  

          NOXO1  6  2.2536E-18  

          APAF1  6  3.6193E-18  

          PLEK2  6  5.6466E-18  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          WDR41  6  1.1471E-17  

          TFAP2B  6  2.4733E-13  

          MAGEE1  6  2.7762E-13  

          HUS1  6  3.3757E-13  

          SALL2  6  1.7545E-12  

          LOC100128023  6  2.0282E-11  

          GJB7  6  4.3009E-11  

          ZNF626  6  7.6244E-11  

          CD7  6  2.4226E-08  

          AKAP1  6  2.394E-07  

          MOBKL2B  6  1.4283E-06  

          CHST10  6  2.2425E-05  

          MAP2  6  1.3605E-19  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          SPAG17  6  7.3519E-45  

          EPSTI1  6  0.03676313  

          FUT8  6  2.0374E-18  

          FOXP3  6  7.7557E-42  

          PRRT3  6  0.00784276  

          CLEC4A  6  0.00023229  

          IQGAP3  5  2.301E-47  

          RPL18A  5  9.0024E-47  

         ITPR3  5  1.6704E-46  

          C8orf46  5  3.5128E-45  

          ZNF582  5  4.6471E-45  

          C21orf33  5  4.9825E-45  

          DCLRE1C  5  6.9453E-45  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          KIAA1804  5  8.9568E-45  

          LCOR  5  3.8852E-44  

          ATAD5  5  4.8367E-44  

          C3orf10  5  6.3661E-44  

          PLK2  5  1.2654E-43  

          LOC100124692  5  2.0977E-43  

          ERN2  5  6.8319E-43  

          OVCH1  5  2.0867E-42  

          LUZP4  5  3.2052E-42  

          ARPP21  5  1.117E-40  

          C19orf21  5  1.181E-40  

          LGALS4  5  1.9382E-40  

          CYB5D2  5  2.2031E-40  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          C3orf18  5  7.7417E-40  

          PIAS1  5  2.3988E-39  

          LTBR  5  1.0994E-38  

          MAP7D1  5  1.1588E-37  

          KIF14  5  2.0867E-37  

          BAALC  5  4.7631E-37  

          IGFBP3  5  6.241E-37  

          C15orf40  5  1.5362E-36  

          ACAP2  5  1.5529E-36  

          PBX1  5  3.0335E-36  

          TAB1  5  4.047E-36  

          LGI3  5  4.1378E-36  

          SIX6  5  5.384E-36  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          RNF11  5  7.7509E-36  

          COL4A5  5  1.1462E-35  

          CYBASC3  5  1.5208E-35  

          FAM3C  5  6.2765E-35  

          PMPCA  5  1.349E-34  

          KCTD16  5  1.5905E-34  

          APIP  5  1.901E-34  

         MBNL2  5  2.2327E-34  

          TJP3  5  4.4591E-34  

          ZNF780B  5  6.6753E-34  

          BTBD7  5  2.206E-33  

          FAM168B  5  2.4893E-33  

          FUT4  5  2.6216E-33  



 

267 

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          ATP5H  5  3.9558E-33  

          SH2D2A  5  5.9131E-33  

          FUCA2  5  1.6612E-32  

          ADAM15  5  1.9313E-32  

          PMS2  5  2.4436E-31  

          KDM5A  5  6.7809E-31  

          MYEOV  5  7.5172E-31  

          GBAS  5  1.422E-30  

          CRYGA  5  5.6845E-30  

          ZNF219  5  6.3909E-30  

          EHF  5  7.6045E-30  

          ANLN  5  8.8111E-30  

          MMP15  5  1.8708E-29  



 

268 

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          FLJ16779  5  6.0261E-29  

          ROGDI  5  6.6792E-29  

          ACCN4  5  7.207E-29  

          KRT19  5  7.2982E-29  

          DUSP4  5  1.2057E-28  

          PHGR1  5  1.2531E-28  

          C1orf141  5  1.5476E-28  

          TNFSF11  5  1.7802E-28  

          AIM1L  5  2.1567E-28  

          CHMP4C  5  5.6088E-28  

          GRHL2  5  6.2759E-28  

          CA11  5  6.9769E-28  

          UBE2MP1  5  1.9221E-27  



 

269 

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          IKBKE  5  8.0984E-27  

          RRP15  5  1.1826E-26  

          TPP2  5  2.0139E-26  

          ASGR1  5  2.1417E-26  

          MOCOS  5  2.6493E-26  

          VNN1  5  4.7609E-26  

         KIAA0495  5  6.6347E-26  

          C14orf132  5  7.991E-26  

          ST3GAL3  5  2.014E-25  

          H2AFX  5  3.9296E-25  

          CENPM  5  1.3868E-24  

          IPMK  5  1.394E-24  

          ZC3HAV1  5  1.5978E-24  



 

270 

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          CLDN12  5  1.7352E-24  

          TNFRSF11A  5  5.756E-24  

          DDX11  5  1.8311E-23  

          OR4M1  5  2.1341E-22  

          NAP1L2  5  4.2078E-22  

          EPS8L1  5  1.2205E-21  

          ZFP36L2  5  1.6409E-21  

          CCDC30  5  2.2064E-20  

          CHSY1  5  3.7852E-20  

          TSNAXIP1  5  1.6335E-19  

          CDH1  5  3.7988E-19  

          ROM1  5  6.2864E-19  

          RAET1L  5  3.4142E-18  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          C10orf81  5  2.1169E-17  

          METT5D1  5  1.8681E-16  

          HSPG2  5  2.0247E-16  

          ISYNA1  5  2.4595E-16  

          RB1  5  1.9103E-15  

          NEFL  5  8.4488E-15  

          SHC2  5  1.0789E-14  

          ESRP2  5  1.277E-14  

          SGK196  5  2.4175E-14  

          SPATA19  5  2.6279E-14  

          PIK3AP1  5  4.0195E-13  

          DTNA  5  1.322E-12  

          CSPP1  5  1.9677E-12  



 

272 

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          CYP3A4  5  4.9044E-12  

          COL3A1  5  6.3362E-12  

          ACAN  5  4.85E-10  

          ADAMTS12  5  6.0752E-10  

          IRF8  5  1.2387E-08  

         STEAP1  5  8.9931E-08  

          LOC642587  5  2.6381E-07  

          CACNA2D2  5  3.1338E-07  

          ZNF542  5  1.3236E-06  

          SYCP2  5  3.3304E-05  

          TGM2  5  0.00012235  

          COX17  5  0.00187543  

          SBNO2  5  0.03845241  



 

273 

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          PLSCR1  5  0.0481102  

          LUM  5  0.04825685  

          PDE4D  5  5.4974E-40  

          AP3B2  5  1.6816E-20  

          CASP4  5  8.0263E-40  

          C6orf167  5  2.4238E-21  

          SERP2  5  0.00031832  

          CHRDL2  5  7.1464E-17  

          C1orf96  5  6.5135E-11  

          XRN1  5  5.5099E-26  

          KCNMB1  5  7.0218E-06  

          MCM4  5  1.2161E-18  

          ZNF205  5  1.0797E-22  



 

274 

Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          MYOCD  5  0.00033494  

          PPP1R3C  5  2.0635E-26  

          SNAP25  5  3.6648E-39  

          PCDHGA1  5  0.00016435  

          TFRC  5  1.3947E-05  

          PRDM9  5  0.00061516  

          FNDC1  5  0.00135475  

          ASB2  5  3.0984E-07  

          CD3G  5  0.00093811  

          GVIN1  5  0.00270394  

          CCL18  5  1.8459E-19  

          CTNND2  5  1.942E-10  

          CRISPLD2  5  7.1377E-12  
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Concordant 

predictors for Both 

cohorts 

 Unique predictors 

for the 

TCGA- 

STAD- MutantTP53 

  Unique predictors 

for the TCGA- 

STAD- 

Wild 

TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          OR5T2  5  9.2373E-05  

          ATR  5  1.5518E-13  

 



 

276 

TCGA-PAAD Project  

          

Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

E2F1  0.004737  EBF1  8  0.028625  S100A16  12  8.69E-05  

KIAA0101  0.000252  KIF18B  8  0.000332  EFNA4  9  0.000472  

ORC6L  6.17E-05  OIP5  8  1.45E-06  OSBPL3  9  8.79E-05  

REV3L  0.009449  SPAG5  8  0.001426  S100A11  9  1.45E-05  

TPX2  1.92E-05  BUB1  7  5.42E-05  TMEM92  9  0.000186  

ZWINT  7.26E-05  C1orf135  7  1.11E-05  ALPK1  8  0.012528  

CDC20  0.000502  CDK1  7  1.62E-05  ANXA11  8  0.000181  

CDC45  0.003119  CDKN3  7  0.003292  C19orf33  8  3.51E-05  

CDC6  0.001088  CENPN  7  0.005529  FNDC3A  8  0.000577  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

FAM72B  0.000178  DTYMK  7  0.000416  KLF5  8  0.003597  

ITGB4  0.000397  FAM72D  7  0.000171  PLEK2  8  4.55E-06  

MYBL2  0.000147  FAM83H  7  0.000351  S100A6  8  0.000332  

UBE2C  1.6E-05  GTSE1  7  0.006853  TRIM16  8  0.004138  

ANLN  1.22E-05  MAD2L1  7  0.002105  ATP2B1  7  0.000735  

ASF1B  0.000331  MCM10  7  4.33E-05  C6orf132  7  0.000707  

AURKA  0.001103  MCM4  7  0.001224  CARD6  7  0.034516  

AURKB  0.036029  PKMYT1  7  0.000558  CMTM7  7  0.000202  

BIRC5  0.001604  POLQ  7  0.002132  DEPDC1B  7  0.027248  

C17orf53  0.00086  RACGAP1  7  0.00189  E2F8  7  0.002327  

DTL  0.009477  SMAD5  7  0.001188  ECT2  7  0.00031  

EPR1  0.001103  SOCS2  7  8.27E-06  ERBB2  7  8.99E-05  



 

278 

Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

EXO1  0.004438  TACC3  7  0.011886  FHL2  7  0.000319  

HJURP  2.25E-05  TNRC6C  7  1.75E-05  FRRS1  7  0.003143  

KIF15  0.00025  UBE2T  7  0.003244  GBP2  7  0.001526  

KIF2C  0.003119  AP1S3  6  4.4E-06  CLIC1  5  8.99E-05  

LAMB3  0.001088  C15orf42  6  0.001074  CMTM7  7  0.000202  

MELK  0.000178  CCNB1  6  0.000948  CPEB4  6  0.030645  

NCAPG  0.000397  CDCA4  6  6.38E-06  CREBL2  5  0.011294  

POC1A  0.000147  E2F7  6  0.000199  CTNNA1  5  2.95E-05  

RAD51  1.6E-05  FAM54A  6  0.031451  DEPDC1B  7  0.027248  

RAD54L  1.22E-05  FANCA  6  0.000267  E2F8  7  0.002327  

SKA1  0.000331  FANCB  6  0.000946  ECM1  5  0.004254  

BUB1B  0.001103  FANCD2  6  0.016025  ECT2  7  0.00031  



 

279 

Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

C11orf82  0.036029  GHR  6  0.024427  EFNA4  9  0.000472  

CCNA2  0.001604  GIMAP7  6  0.010649  EPS8  5  0.002502  

CCNB2  0.00086  GNG2  6  0.034834  EPS8L1  6  6.29E-05  

CDC25C  0.004438  GPR56  6  0.016224  ERBB2  7  8.99E-05  

CDCA5  2.25E-05  HERC1  6  0.002092  ESPL1  6  0.011441  

CENPE  0.00025  KRT19  6  8.71E-05  ETV6  5  0.006154  

CEP55  0.003119  MCM2  6  0.000184  FAM83A  5  1.1E-08  

CKAP2L  0.001088  MLF1IP  6  0.005946  FCGR2C  5  0.015442  

CKS2  0.000178  PLK4  6  0.003457  FGD6  5  1.32E-05  

DLGAP5  0.000397  POLE2  6  0.012267  FHL2  7  0.000319  

EME1  0.000147  PPP3CB  6  0.000635  FICD  5  0.000852  

ERCC6L  0.000252  RECQL4  6  0.014789  FLJ23867  6  0.00065  

FAM64A  6.17E-05  RFC4  6  0.001206  FMO1  6  0.014526  

GINS1  0.009449  RNASEH2A  6  0.013048  FNDC3A  8  0.000577  

KIF18A  1.92E-05  SP3  6  0.032765  FOXQ1  6  0.001168  



 

280 

Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

KIF23  7.26E-05  TRIP13  6  0.000958  FRRS1  7  0.003143  

KIFC1  0.000502  TTK  6  0.00014  FSTL1  5  0.009385  

KLHL8  0.003119  USP38  6  0.025547  FUT3  5  0.009743  

LAMC2  0.001088  WDR62  6  0.001506  GALNT6  5  0.049224  

MET  0.000178  ABCD2  5  0.009565  GBP2  7  0.001526  

MND1  0.000397  APC  5  0.015096  GFPT2  5  0.015807  

NCAPH  0.000147  ARHGAP11A  5  0.000408  GPRC5A  7  8.26E-05  

NEK2  1.6E-05  BCL2L1  5  0.000569  GPX8  5  0.000268  

NUF2  1.22E-05  C9orf140  5  0.001455  GRHL2  7  0.002233  

NUSAP1  0.000331  CCND1  5  0.000353  GUK1  5  0.002875  

SGOL1  0.001103  CCT5  5  0.001123  HAGH  5  0.013516  

SHCBP1  0.036029  CDCP1  5  2.37E-06  HDHD2  6  1.24E-05  

TK1  0.001604  DICER1  5  0.014328  HMGA2  7  0.000101  

TOP2A  0.00086  DVL1  5  0.001809  HMMR  5  0.000212  

ASPM  0.009477  ELMO1  5  0.00029  IGF2BP2  5  0.00034  



 

281 

Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

C16orf75  0.001103  FAM72A  5  0.001414  IGFBP7  5  0.045159  

C1orf106  0.004438  FBN1  5  0.029747  IL18  5  3.18E-05  

C1orf112  2.25E-05  FBXL15  5  0.025065  IQGAP3  5  0.000449  

CDCA8  0.00025  GJB3  5  4.12E-05  IRF2BP1  5  0.000525  

CENPA  0.000178  GTF3C3  5  0.029453  ITGB6  6  4.04E-05  

CENPF  0.000397  H2AFZ  5  0.00589  ITPR3  6  0.000229  

CENPI  0.000147  HELLS  5  0.001426  KCNN4  5  2.47E-06  

CENPK  0.000252  ITGA2  5  2.96E-05  KLF5  8  0.003597  

CENPM  6.17E-05  KCTD12  5  0.006755  KRT15  5  0.000293  

COL14A1  0.009449  KIF14  5  0.000745  KYNU  5  0.000503  

DEPDC1  1.92E-05  KIF22  5  0.023699  LGALS3  7  0.000264  

EPHA2  7.26E-05  KRT7  5  6.62E-06  LGALS9  6  0.001236  

EZH2  0.000502  LAMA3  5  2.45E-06  LPAR5  5  0.043872  

FANCI  0.003119  MAP3K2  5  0.045311  LRRC8E  7  0.001481  

FOXM1  0.001088  METTL7A  5  0.000154  LY6E  5  8.36E-07  



 

282 

Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

KIF11  0.000178  MFSD10  5  0.007827  MAPK10  5  0.017987  

KIF20A  0.000397  MZF1  5  0.003965  MBOAT1  5  0.016538  

KIF4A  0.001103  NCAPG2  5  0.010684  MFSD2B  7  5.05E-05  

MKI67  0.036029  NEIL3  5  0.001942  MLKL  6  0.001386  

NDC80  0.001604  ORC1L  5  0.026493  MST1R  7  0.000786  

PBK  0.00086  PLK1  5  5.58E-05  MSX2  6  0.001264  

PRC1  0.009477  RANBP1  5  0.033819  MVP  6  0.001289  

PTTG1  0.001103  RHOD  5  3.46E-06  MYD88  5  0.000195  

RRM2  0.004438  SDC4  5  3.46E-06  MYEOV  6  0.000244  

SKA3  2.25E-05  SEPP1  5  7.6E-05  MYOF  5  3.08E-05  

SMG1  0.00025  SGOL2  5  0.023939  NDE1  6  2.52E-05  

TGFA  0.000178  SH2D3A  5  0.001877  NFKB2  6  0.028741  

TROAP  0.000397  SHE  5  0.047737  NRM  7  6.66E-05  

UHRF1  0.000147  SMC4  5  0.000562  NXF2B  6  0.000766  

    SPC24  5  9.97E-05  OSBPL3  9  8.79E-05  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    SSH3  5  4.65E-05  P2RY2  5  7.61E-07  

    TADA1  5  0.009931  PAIP2  6  0.012369  

    TANK  5  0.030459  PDP1  6  0.000473  

    TRAIP  5  0.003182  PDZK1IP1  5  0.004897  

    TRIM23  5  0.03762  PEG3  5  0.045423  

    VCAN  5  0.0004  PLCD3  5  0.000142  

    ZFX  5  0.049586  PLEK2  8  4.55E-06  

    AIFM2    0.026586  PLEKHN1  6  2.95E-06  

    APAF1    0.039073  POLD4  5  0.000667  

    BAX    0.024581  PPAP2C  5  0.013835  

    BID    0.003637  PPFIA3  5  0.037262  

    CASP8    0.003342  PPP1CA  7  0.000652  

    CCNE1    0.000336  PRMT10  5  0.001055  

    CCNG1    0.00275  PSMB8  5  0.001593  

    CDK2    0.002537  PTMA  5  1.56E-06  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

 
  CDK6    0.001093  PTPN12  7  0.000322  

    CDKN2A    3.67E-05  PVRL4  7  0.000453  

    CHEK1    0.004123  QDPR  6  0.002131  

    CHEK2    0.020645  RAD51AP1  6  0.008212  

    DDB2    9.45E-05  RALB  5  8.66E-08  

    GADD45A    0.006611  RBM23  5  0.002261  

    GADD45G    0.001576  RELA  5  0.000146  

    IGFBP3    9.99E-06  RHBDF1  5  0.00019  

    MDM2    2.1E-05  RHBDL2  5  0.000365  

    MDM4    0.001537  RNF149  5  1.6E-06  

    PERP    0.000134  RTN1  6  0.02971  

    PMAIP1    0.014088  S100A11  9  1.45E-05  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    PPM1D    8.11E-07  S100A14  7  0.000254  

    RCHY1    0.002448  S100A16  12  8.69E-05  

    RPRM    0.012027  S100A6  8  0.000332  

    RRM2B    0.006333  SERPINB5  5  0.0001  

    SERPINB5    0.0001  SEZ6  7  0.010111  

    SERPINE1    0.030528  SF3B1  6  0.024334  

    SESN1    9.22E-05  SFN  7  5.1E-05  

    SFN    5.1E-05  SIK3  5  0.00227  

    SHISA5    0.003162  SLC26A11  6  1.24E-05  

    SIAH1    0.006535  SLC39A1  6  7.61E-05  

    STEAP3    4.6E-05  SMARCA2  5  0.000184  

    THBS1    0.036411  SNAPC4  5  0.001722  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

    TNFRSF10B    0.00098  SPPL2B  5  0.004074  

    TP73    0.000133  STIL  5  0.00265  

    CD82    0.007478  TACSTD2  5  0.000262  

          TM4SF1  5  2.22E-05  

          TMC7  7  5.38E-05  

          TMEM92  9  0.000186  

          TMOD3  5  5.32E-05  

          TMPRSS4  5  5.26E-05  

          TMSB10  7  2.43E-05  

          TNFRSF10B  6  0.00098  

          TNS4  6  3.87E-07  

          TPBG  6  0.000283  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          TPM4  6  9.5E-05  

          TRIM16  8  0.004138  

 
        TRIM34  6  0.02517  

          TRIP10  5  1.61E-05  

          TSKU  5  6.19E-05  

          TSPYL4  5  0.040254  

          TUBA1C  5  0.000449  

          TWF2  5  0.000229  

          VAMP8  5  0.000515  

          ZFP36L1  6  6.53E-05  

          ZNF267  5  0.007883  

          ZNF441  6  0.006687  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          ZNF540  6  0.001851  

          ZNF625  5  0.030366  

          ZNF709  6  0.010831  

          SERPINE1    0.030528  

          SESN1    9.22E-05  

          SHISA5    0.003162  

          SIAH1    0.006535  

          STEAP3    4.6E-05  

          THBS1    0.036411  

          TP73    0.000133  

          CD82    0.007478  

          AIFM2    0.026586  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          APAF1    0.039073  

          BAX    0.024581  

          BCL2L1    0.000569  

          BID    0.003637  

          CASP8    0.003342  

          CCNB1    0.000948  

          CCND1    0.000353  

          CCNE1    0.000336  

          CCNG1    0.00275  

          CDK1    1.62E-05  

          CDK2    0.002537  

          CDK6    0.001093  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          CDKN2A    3.67E-05  

          CHEK1    0.004123  

          CHEK2    0.020645  

          DDB2    9.45E-05  

          GADD45A    0.006611  

          GADD45G    0.001576  

          GTSE1    0.006853  

          IGFBP3    9.99E-06  

          MDM2    2.1E-05  

          MDM4    0.001537  

          PERP    0.000134  

          PMAIP1    0.014088  
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Concordant  

predictors for Both 

cohorts 

 Unique predictors 

for the TCGAPAAD- 

MutantTP53 

  Unique predictors 

for the TCGAPAAD- 

Wild TypeTP53 

  

Gene Name  P-value  Gene Name  Frequency  P-value  Gene Name  Frequency  P-value  

          PPM1D    8.11E-07  

          RCHY1    0.002448  

          RPRM    0.012027  

          RRM2B    0.006333  

 


